精英家教网 > 高中数学 > 题目详情
2.不等式|x|<2x-1的解集为{x|x>1}.

分析 由题意,$\left\{\begin{array}{l}{x≥0}\\{x<2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{-x<2x-1}\end{array}\right.$,即可得出结论.

解答 解:由题意,$\left\{\begin{array}{l}{x≥0}\\{x<2x-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{-x<2x-1}\end{array}\right.$,
∴x>1.
故答案为{x|x>1}.

点评 本题考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式来解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知A,B分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当$\frac{a}{b}-\frac{1}{3mn}$取最大值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-x2+ax+b,且f(4)=-3.
(1)若函数f(x)在区间[2,+∞)上递减,求实数b的取值范围;
(2)若函数f(x)的图象关于直线x=1对称,且关于x的方程f(x)=log2m在区间[-3,3]上有解,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,且${S_n}=\frac{3}{2}{n^2}-\frac{1}{2}n({n∈{N^*}})$,数列{bn}满足${a_n}=3{log_2}{b_n}-2({n∈{N^*}})$,则数列{an•bn}的前n项和Tn=10+(3n-5)2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,若直线y=x与直线$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.,(t$是参数,0≤θ<π)垂直,则θ=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(1)${8^{\frac{1}{3}}}-{(6\frac{1}{4})^{\frac{1}{2}}}+{π^0}-{3^{-1}}$;
(2)$2{log_6}2+{log_6}9+\frac{3}{2}{log_3}\frac{1}{9}-{8^{\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在($\frac{y}{\sqrt{x}}-\frac{x}{\sqrt{y}}$)16的二项展开式的17个项中,整式的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.赵先生、钱先生、孙先生他们都知道桌子的抽屉里有16张扑克牌:红桃A、Q、4黑桃J、8、4、2、7、3草花K,Q,5,4,6方块A,5,李教授从这16张牌中挑出一张牌来,并把这张牌的点数告诉钱先生,把这张牌的花色告诉孙先生.这时,李教授问钱先生和孙先生:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,赵先生听到如下的对话:
钱先生:我不知道这张牌.
孙先生:我知道你不知道这张牌.钱先生:现在我知道这张牌了.
孙先生:我也知道了.
听罢以上的对话,赵先生想了一想之后,就正确地推出这张牌是什么牌.
请问:这张牌是什么牌?方块5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.曲线C:y2=12x,直线l:y=k(x-4),l与C交于两点A(x1,y1),B(x2,y2).
(1)求x1x2
(2)若|AB|=4$\sqrt{42}$,求直线l的方程.

查看答案和解析>>

同步练习册答案