精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的前n项和为Sn,且${S_n}=\frac{3}{2}{n^2}-\frac{1}{2}n({n∈{N^*}})$,数列{bn}满足${a_n}=3{log_2}{b_n}-2({n∈{N^*}})$,则数列{an•bn}的前n项和Tn=10+(3n-5)2n+1

分析 利用an=Sn-Sn-1求出数列{an}的通项公式,然后利用${a_n}=3{log_2}{b_n}-2({n∈{N^*}})$,求出数列{bn}通项公式;利用cn=anbn.求出数列cn的通项公式,写出前n项和Tn的表达式,利用错位相减法,求出前n项和Tn

解答 解:由已知得,当n≥2时,an=Sn-Sn-1=($\frac{3}{2}$n2-$\frac{1}{2}$n)-[$\frac{3}{2}$(n-1)2-$\frac{1}{2}$(n-1)]=3n-2,
又a1=1=3×1-2,符合上式.
故数列{an}的通项公式an=3n-2.
又因为${a_n}=3{log_2}{b_n}-2({n∈{N^*}})$,
所以log2bn=$\frac{1}{3}$(an+2)=n,即bn=2n
令cn=anbn
则cn=(3n-2)•2n
所以Tn=1×21+4•22+7•23+…+(3n-2)•2n,①
2Tn=1×22+4×23+7•24+…+(3n-2)•2n+1,②
由②-①得:-Tn=2+3•22+3•23+…+(3n-5)•2n+1=3×(2+22+…+2n)-(3n-2)•2n+1-2
=-(3n-5)•2n+1-10,
所以Tn=10+(3n-5)2n+1
故答案是:10+(3n-5)2n+1

点评 本题考查数列的通项公式的求法,数列求和等基础知识,考查计算能力、推理论证能力、综合发现问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,$f(x)=2-{({\frac{1}{2}})^x}$,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是(  )
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{4}})$C.$({\frac{{\sqrt{2}}}{4},\frac{1}{2}})$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x>0,则函数${y_1}=-{a^{-x}}$与y2=logax(a>0,且a≠1)在同一坐标系上的部分图象只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x),g(x)分别是R上的偶函数和奇函数,则下列结论正确的是(  )
A.f(x)+g(x)是奇函数B.f(x)-g(x)是偶函数C.f(x)•g(x)是奇函数D.f(x)•g(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,且S3=9,a2a4=21,数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}})$,若${b_n}<\frac{1}{10}$,则n的最小值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xlnx+$\frac{1}{2}$mx2-(m+1)x+1.
(1)若g(x)=f'(x),讨论g(x)的单调性;
(2)若f(x)在x=1处取得极小值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式|x|<2x-1的解集为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若A为不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-x≤2}\end{array}\right.$表示的平面区域,则当a从-2连续变化到1时,则直线x+y=a扫过A中的那部分区域的面积为(  )
A.1B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a>b>1,0<c<1,则(  )
A.ac<bcB.abc<bacC.ca<cbD.logac<logbc

查看答案和解析>>

同步练习册答案