精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定义域上的单调增函数,则a的取值范围是(  )
A.[3-$\sqrt{3}$,2)B.$(\sqrt{5}-1,\sqrt{3})$C.$(1,\sqrt{3})$D.$(1,3-\sqrt{3})$

分析 利用分段函数以及指数函数与对数函数的性质,列出不等式组求解即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定义域上的单调增函数,
可得$\left\{\begin{array}{l}{3-a>1}\\{a>1}\\{(3-a)^{2}≤lo{g}_{a}1+3}\end{array}\right.$,
解得:a∈[3-$\sqrt{3}$,2).
故选:A.

点评 本题考查分段函数的单调性的应用,指数函数以及对数函数的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数$y=\left\{\begin{array}{l}x+4,x≤0\\{x^2}-2x,0<x≤4\\-x+2,x>4\end{array}\right.$.
(1)求f(f(5))的值;
(2)画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x∈N|x≤3},B={x|x2+6x-16<0},则A∩B=(  )
A.{x|-8<x<2}B.{1}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A,B分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当$\frac{a}{b}-\frac{1}{3mn}$取最大值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=x2+lgx-3的一个零点所在区间为(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\frac{3}{2})$D.$(\frac{3}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\sqrt{6-2x}+lg(x+2)$的定义域为集合A,B={x|x>3或x<2}.
(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若log545=a,则log53等于(  )
A.$\frac{2}{a-1}$B.$\frac{2}{1+a}$C.$\frac{a+1}{2}$D.$\frac{a-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-x2+ax+b,且f(4)=-3.
(1)若函数f(x)在区间[2,+∞)上递减,求实数b的取值范围;
(2)若函数f(x)的图象关于直线x=1对称,且关于x的方程f(x)=log2m在区间[-3,3]上有解,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在($\frac{y}{\sqrt{x}}-\frac{x}{\sqrt{y}}$)16的二项展开式的17个项中,整式的个数是3.

查看答案和解析>>

同步练习册答案