精英家教网 > 高中数学 > 题目详情
15.已知集合A={x∈N|x≤3},B={x|x2+6x-16<0},则A∩B=(  )
A.{x|-8<x<2}B.{1}C.{0,1}D.{0,1,2}

分析 化简集合A、B,求出A∩B即可.

解答 解:集合A={x∈N|x≤3}={0,1,2,3},
B={x|x2+6x-16<0}={x|-8<x<2},
A∩B={0,1}.
故选:C.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知AB=2,AC=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-3.
(1)求BC的长;
(2)求sin(C+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π}),sinβ=\frac{{2\sqrt{2}}}{3},sin({α+β})=\frac{7}{9}$,则sinα的值为$\frac{1}{3}$;$tan\frac{α}{2}$的值为3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.A={x|x是小于9的质数},B={x|x是小于9的正奇数},则A∩B的子集个数是(  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:函数f(x)=lg(ax2-ax+1)的定义域是R;命题$q:幂函数y={x^{({1-{a^2}})}}$在第一象限为增函数,若“p∧q”为假,“p∨q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,$f(x)=2-{({\frac{1}{2}})^x}$,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是(  )
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{4}})$C.$({\frac{{\sqrt{2}}}{4},\frac{1}{2}})$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某地自来水苯超标,当地自来水公司对水质检测后,决定在水中投放一种药剂来净化水质,已知每投放质量为m的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足y=mf(x),其中f(x)=$\left\{\begin{array}{l}\frac{x^2}{25}+2,({0<x≤5})\\ \frac{x+19}{2x-2},({x>5})\end{array}$,当药剂在水中的浓度不低于5(毫克/升)时称为有效净化;当药剂在水中的浓度不低于5(毫克/升)且不高于10(毫克/升)时称为最佳净化.
(Ⅰ)如果投放的药剂质量为m=5,试问自来水达到有效净化一共可持续几天?
(Ⅱ)如果投放的药剂质量为m,为了使在9天(从投放药剂算起包括9天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定义域上的单调增函数,则a的取值范围是(  )
A.[3-$\sqrt{3}$,2)B.$(\sqrt{5}-1,\sqrt{3})$C.$(1,\sqrt{3})$D.$(1,3-\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,且S3=9,a2a4=21,数列{bn}满足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}})$,若${b_n}<\frac{1}{10}$,则n的最小值为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案