分析 (1)利用函数f(x)值不大于2,点的不等式,取得绝对值符号求x的取值范围;
(2)求出f(x)-g(x)的最值,利用不等式的解集为R,得到m的关系式,求m的取值范围.
解答 解:(1)由题意得f(x)≤2,
即|x-3|-3≤2,得|x-3|≤5.
解得-2≤x≤8,∴x的取值范围是[-2,8].-------(4分)
(2)f(x)-g(x)=|x-3|+|x+1|-7,
因为对于?x∈R,由绝对值的三角不等式得
f(x)-g(x)=|x-3|+|x+1|-7≥|(x-3)-(x+1)|-7=4-7=-3.--------(10分)
于是有m+1≤-3,得m≤-4,
即m的取值范围是(-∞,-4].--------(12分)
点评 本题考查绝对值不等式的解法,绝对值的几何意义,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$(-$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$) | B. | $\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$) | C. | $\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$) | D. | $\frac{1}{2}$(-$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com