精英家教网 > 高中数学 > 题目详情
已知各项均为正数的数列{an}的前n项和为Sn,且对任意的n∈N*,都有2Sn=an2+an
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,2bn+1-bn=0(n∈N*),且cn=anbn,求数列{cn}的前n项和Tn
(3)在(2)的条件下,是否存在整数m,使得对任意的正整数n,都有m-2<Tn<m+2.若存在,求出m的值;若不存在,试说明理由.
考点:数列递推式,数列的求和
专题:等差数列与等比数列
分析:(1)易求a1=1,n≥2时,2an=2(Sn-Sn-1)=(an2+an)-(an-12+an-1),化简可得an-an-1=1,可知{an}为等差数列,易求an
(2)由条件可知{bn}为等比数列,易求bn,cn,利用错位相减法可求得Tn
(3)只需求得Tn的范围,由(2)知Tn<4.由数列单调性可得Tn≥T1=1,于是可得m;
解答: 解:(1)当n=1时,2S1=a12+a1.∴a1=1,
当n≥2时,2an=2(Sn-Sn-1)=(an2+an)-(an-12+an-1)
整理,得(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,∴an-an-1=1,
∴an=1+(n-1)×1=n.
(2)由b1=1,
bn+1
bn
=
1
2
,得bn=(
1
2
)n-1

cn=n•(
1
2
)n-1

∴Tn=1+2×
1
2
+…+n×(
1
2
)n-1
,①
1
2
Tn=
1
2
+2(
1
2
)2+…+n(
1
2
)n
,②
①-②,得
1
2
Tn=1+
1
2
+2(
1
2
)2+…+(
1
2
)n-1-n(
1
2
)n=
1-(
1
2
)
n
1-
1
2
-n(
1
2
)n
=2-(n+2)(
1
2
)n

∴Tn=4-(n+2)•(
1
2
)n-1

(3)由(2)知,对任意n∈N*,都有Tn<4.
Tn+1-Tn=(n+2)(
1
2
)n-1-(n+3)(
1
2
)n=(n+1)(
1
2
)n>0

∴Tn≥T1=1,∴0<Tn<4(n∈N*).
故存在整数m=2,使得对于任意n∈N*,都有m-2<Tn<m+2.
点评:该题考查等差数列、等比数列的通项公式,考查数列求和,考查学生综合运用知识分析问题解决问题的能力,错位相减法对数列求和是考查重点,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn满足Sn+1=a2Sn+a1,其中a2≠0.
(1)若a2=2,求a1及an
(2)若a2>-1,求证:Sn
n
2
(a1+an),并给出等号成立的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明函数y=x3+1在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3+3(1-a)x2-6ax-3a,g(x)=3x2+kx.
(Ⅰ)对任意a≥1,使得f(-1)是函数f(x)在区间[-1,b](b>-1)上的最大值,试求最大的实数b.
(Ⅱ)若0<a<1,对于区间[-1,0]上的任意两个不相等的实数x1、x2,且x1<x2,都有|g(x1)-g(x2)|<f(x1)-f(x2)成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-1|+ax.
(Ⅰ)当a=2时,解关于x的不等式f(x)≥|x-2|;
(Ⅱ)若f(x)≥x-
1
2
在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-y+1=0与2x-2y-1=0是圆的两条切线,则该圆的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个扇形周长为4,面积为1,则其中心角等于
 
(弧度)

查看答案和解析>>

科目:高中数学 来源: 题型:

1
2
(tanx+sinx)-
1
2
|tanx-sinx|-k≥0在x∈[
4
5
4
π]恒成立,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校田径队有9名实力相当的短跑选手,来自高一、二、三年级的人数分别为1,2,6,现从中选派4人参加4×400米接力比赛,且所选派的4人中,高一、二年级的人数之和不超过高三年级的人数,记此时选派的高三年级的人数为ξ,则Eξ=
 

查看答案和解析>>

同步练习册答案