分析 将AC,BD对应的向量用平行四边形的相邻两边对应的向量表示,相减可得答案.
解答 解:解:设平行四边形的相邻两边的向量分别为:$\overrightarrow{AB},\overrightarrow{AD}$,
由平行四边形法则得$\left\{\begin{array}{l}{{\overrightarrow{AC}}^{2}=(\overrightarrow{AB}+\overrightarrow{AD})^{2}}\\{{\overrightarrow{BD}}^{2}=(\overrightarrow{AD}-\overrightarrow{AB})^{2}}\end{array}\right.$,
两式相减得$4\overrightarrow{AB}•\overrightarrow{AD}={3}^{2}-{2}^{2}=5$.
∴$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{4}$.
故答案为:$\frac{5}{4}$.
点评 本题考查平面向量的数量积运算,考查了向量的平行四边形法则的运用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | b>c>a | B. | b>a>c | C. | a>b>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z) | ||
| C. | [kπ-$\frac{π}{6}$,kπ+$\frac{5π}{6}$](k∈Z) | D. | [kπ+$\frac{5π}{6}$,kπ+$\frac{11π}{6}$](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2π | B. | π | C. | $\frac{π}{2}$ | D. | 4π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com