精英家教网 > 高中数学 > 题目详情
17.一课题组对日平均温度与某种蔬菜种子发芽多少之间的关系进行分析研究,记录了连续五天的日平均温度与实验室每天每100颗种子中的发芽数,得到如下资料:
日    期第一天第二天第三天第四天第五天
日平均温度x(℃)121113108
发芽数y(颗)2625302315
该课题组的研究方案是:先从这五组数据中选取3组,用这3组数据求线性回归方程,再对剩下2组数据进行检验,若由线性回归方程得到的数据与剩下的2组数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的
(Ⅰ)求选取的3组数据中有且只有2组数据是相邻2天数据的概率;
(Ⅱ)若选取恰好是前三天的三组数据,请根据这三组数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a,并判断该线性回归方程是否可靠(参考公式b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$.

分析 (Ⅰ)对这五组数据分别编号,利用列举法求出基本事件数以及有且只有2组数据是相邻2天数据的事件数,计算所求的概率值;
(Ⅱ)由数据求得$\overline{x}$、$\overline{y}$,根据公式求得b与a的值,得到线性回归方程,利用回归方程计算数值,判断是否可靠即可.

解答 解:(Ⅰ)对这五组数据分别编号为1、2、3、4、5,从这五组数据中选取3组数据,
基本事件是123、124、125、134、135、145、234、235、245、345共有10种情况,
每种情况是等可能出现的,其中有且只有2组数据是相邻2天数据的情况是
124、125、134、145、235、245共有6种,
所以所求的概率为P=$\frac{6}{10}$=$\frac{3}{5}$;
(Ⅱ)由数据求得$\overline{x}$=$\frac{1}{3}$×(12+11+13)=12,
$\overline{y}$=$\frac{1}{3}$×(26+25+30)=27;
由公式求得b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{(12-12)×(26-27)+(11-12)(25-27)+(13-12)(30-27)}{{(12-12)}^{2}{+(11-12)}^{2}{+(13-12)}^{2}}$=$\frac{5}{2}$,
a=$\overline{y}$-b$\overline{x}$=-3;
所以,y关于x的线性回归方程是$\widehat{y}$=$\frac{5}{2}$x-3;
当x=10时,$\widehat{y}$=$\frac{5}{2}$×10-3=22,|22-23|≤1;
同样,当x=8时,$\widehat{y}$=$\frac{5}{2}$×8-3=17,|17-15|>1;
所以该研究所得到的线性回归方程是不可靠的.

点评 本题考查了列举法求古典概型的概率问题,也考查了线性回归方程的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下面随机变量X的分布列不属于二项分布的是(  )
A.据中央电视台新闻联播报道,一周内在某网站下载一次数据,电脑被感染某种病毒的概率是0.65,设在这一周内,某电脑从该网站下载数据n次中被感染这种病毒的次数为X
B.某射手射击击中目标的概率为p,设每次射击是相互独立的,从开始射击到击中目标所需要的射击次数为X
C.某射手射击击中目标的概率为p,设每次射击是相互独立的,射击n次命中目标的次数为X
D.位于某汽车站附近有一个加油站,汽车每次出站后到这个加油站加油的概率为0.6,国庆节这一天有50辆汽车开出该站,假设一天里汽车去该加油站加油是相互独立的,去该加油站加油的汽车数为X

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.运行如图所示的程序框图,若输出的结果为$\frac{1}{63}$,则判断框中应填入的条件是(  )
A.i>4?B.i<4?C.i>5?D.i<5?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线y=1+$\sqrt{4-{x^2}}$(|x|≤2)与直线y=k(x-2)+4只有一个公共点时,实数k的取值范围是$k=\frac{5}{12}或k>\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow a$|=|$\overrightarrow b$|=$\overrightarrow a$•$\overrightarrow b$=2且($\overrightarrow a$-$\overrightarrow c$)•($\overrightarrow b$-$\overrightarrow c$)=0,则|2$\overrightarrow b$-$\overrightarrow c$|的最大值为$\sqrt{7}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从集合A={-1,$\frac{1}{2}$,2}中随机选取一个数记为k,从集合B={$\frac{1}{2}$,$\frac{3}{2}$,2}中随机选取一个数记为a,则ak>1的概率为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某教师一天上3个班级的课,每班一节,如果一天共8节课,上午5节、下午3节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有(  )
A.474种B.312种C.462种D.300种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≥0}\\{3x-y+1≤0}\end{array}\right.$且目标函数z=ax-by(a>0,b<0)的最大值为-4,则$\frac{b-1}{a+1}$的取值范围是(  )
A.(-∞,-$\frac{1}{3}$)∪(-5,+∞)B.(-5,-$\frac{1}{3}$)C.(-∞,-3)∪(-$\frac{1}{5}$,+∞)D.(-3,-$\frac{1}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等比数列{an}的公比q>1,前n项和为Sn,S3=7,且a1+3,3a2,a3+4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=(3n-2)an,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案