精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ax3-x2+4x+3,若在区间[-2,1]上,f(x)≥0恒成立,则a的取值范围是(  )
A.[-6,-2]B.$[-6,-\frac{9}{8}]$C.[-5,-3]D.[-4,-3]

分析 分x=0,0<x≤1,-2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集

解答 解:解:当x=0时,不等式ax3-x2+4x+3≥0对任意a∈R恒成立;
当0<x≤1时,ax3-x2+4x+3≥0可化为a≥$\frac{1}{x}$$-\frac{4}{{x}^{2}}$$-\frac{3}{{x}^{3}}$,
令f(x)=$\frac{1}{x}$$-\frac{4}{{x}^{2}}$-$\frac{3}{{x}^{3}}$,则f′(x)=-$\frac{1}{{x}^{2}}$$+\frac{8}{{x}^{3}}$+$\frac{9}{{x}^{4}}$=-$\frac{(x-9)(x+1)}{{x}^{4}}$(*),
当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,
f(x)max=f(1)=-6,∴a≥-6;
当-2≤x<0时,ax3-x2+4x+3≥0可化为a≤$\frac{1}{x}$-$\frac{4}{{x}^{2}}$$-\frac{3}{{x}^{3}}$,
由(*)式可知,当-2≤x<-1时,f′(x)<0,f(x)单调递减,
当-1<x<0时,f′(x)>0,f(x)单调递增,
f(x)min=f(-1)=-2,∴a≤-2;
综上所述,实数a的取值范围是-6≤a≤-2,即实数a的取值范围是[-6,-2].
故答案为:[-6,-2].

点评 本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集.若按照参数讨论则取并集,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某大型商场成立十周年之际,为了回馈顾客,特进行有奖销售:有奖销售期间,每购买满100元该商场的商品,都有一次抽奖机会,一旦中奖,将获得一个精美奖品;抽奖方案有A、B两种,可自主选择,A方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,不放回地摸3次,若至少摸到两个红球就中奖,否则无奖;B方案是:从装有3个红色小球和7个白色小球的箱子里每次摸1个小球,有放回地摸3次,若至少有两次摸到红球就中奖,否则无奖;其中箱子里的小球除颜色和编号外完全相同.
(Ⅰ)若某顾客用A方案抽奖一次,求他抽到的3个小球中红球个数X的分布列和期望;
(Ⅱ)若甲、乙两顾客分别用A、B方案各抽奖一次,它们中奖的概率是否相同?若你去抽奖,将选择哪种方案?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x(lnx-ax).
(1)a=$\frac{1}{2}$时,求f(x)在点(1,f(1))处的切线方程;
(2)若f(x)存在两个不同的极值x1,x2,求a的取值范围;
(3)在(2)的条件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知ABC-A1B1C1为直三棱柱,AB⊥BC,AA1=AB=BC,连接AB1交A1B于点E,
(1)求证:AE⊥A1C
(2)若A1A=2,求E到平面A1AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用正奇数按如表排列
第1列第2列第3列第4列第5列
第一行1357
第二行1513119
第三行17192123
2725
则2017在第     行第      列.(  )
A.第253行第1列B.第253行第2列C.第252行第3列D.第254行第2列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率e=$\frac{1}{2}$,且过点$M(1,\frac{3}{2})$.
(1)求椭圆C的方程;
(2)椭圆C长轴两端点分别为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA,PB分别交于M,N两点,又E(7,0),求证:直线EM⊥直线EN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=2px(p>0),焦点F($\frac{p}{2}$,0),如果存在过点M(x0,0)$({x_0}>\frac{p}{2})$的直线l与抛物线C交于不同的两点A、B,使得S△AOM=λ•S△FAB,则称点M为抛物线C的“λ分点”.
(1)如果M(p,0),直线l:x=p,求λ的值;
(2)如果M(p,0)为抛物线C的“$\frac{4}{3}$分点”,求直线l的方程;
(3)(普通中学做)命题甲:证明点M(p,0)不是抛物线C的“2分点”;
(重点中学做)命题乙:如果M(x0,0)$({x_0}>\frac{p}{2})$是抛物线的“2分点”,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=x3-4x-a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x1<-2B.x2>0C.x3<1D.x3>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程$\sqrt{3}$cosx+sinx-a=0在区间[0,π]上恰有两个不等实根α,β,则α+β的值为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案