精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=x3-4x-a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x1<-2B.x2>0C.x3<1D.x3>2

分析 利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.

解答 解:∵函数f (x)=x3-4x+a,0<a<2,∴f′(x)=3x2-4.
令f′(x)=0,可得 x=±$\frac{2\sqrt{3}}{3}$.
∵当x<-$\frac{2\sqrt{3}}{3}$时,f′(x)>0;在(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)上,f′(x)<0;
在($\frac{2\sqrt{3}}{3}$,+∞)上,f′(x)>0.
故函数在(-∞,-$\frac{2\sqrt{3}}{3}$)上是增函数,在(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)上是减函数,在($\frac{2\sqrt{3}}{3}$,+∞)上是增函数.
故f(-$\frac{2\sqrt{3}}{3}$)是极大值,f($\frac{2\sqrt{3}}{3}$)是极小值.
再由f(x)的三个零点为x1,x2,x3,且x1<x2<x3,可得 x1<-$\frac{2\sqrt{3}}{3}$,-$\frac{2\sqrt{3}}{3}$<x2<$\frac{2\sqrt{3}}{3}$,x3>$\frac{2\sqrt{3}}{3}$.
根据f(0)=a>0,且f($\frac{2\sqrt{3}}{3}$)=a-$\frac{16\sqrt{3}}{9}$<0,可得 $\frac{2\sqrt{3}}{3}$>x2>0,
故选:B.

点评 本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-lnx.
(1)当a=1时,求曲线y=f(x)在(e,f(e))(e为自然对数的底)处的切线方程;
(2)当x∈(0,e]时,是否存在实数a,使得f(x)的最小值是3?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ax3-x2+4x+3,若在区间[-2,1]上,f(x)≥0恒成立,则a的取值范围是(  )
A.[-6,-2]B.$[-6,-\frac{9}{8}]$C.[-5,-3]D.[-4,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.[A]已知函数f(x)=alnx+$\frac{1-a}{2}{x}^{2}-x$,0<a<1.
(1)讨论函数f(x)的单调性;
(2)关于x的不等式f(x)<$\frac{a}{a-1}$在[1,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将正偶数按下边规律排列,第19行,从左到右,第6个数是(  )
2
4 6 8
10 12 14 16 18
20 22 24 26 28 30 32
A.654B.656C.658D.660

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax3+bx2+cx+d为奇函数,且在x=-1处取得最大值2
(1)求f(x)的解析式;
(2)过点A(1,t)(t≠-2)可作函数f(x)图象的三条切线,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)有极值点,则导函数f′(x)的图象可能是(  )
A.①③B.②③C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线l与抛物线y2=8x交于A、B两点,若线段AB中点的纵坐标为2,则l的斜率等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,则f(k+1)等于(  )
A.f(k)+$\frac{1}{3(k+1)+1}$B.f(k)+$\frac{2}{3k+2}$
C.f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$D.f(k)+$\frac{1}{3k+4}$-$\frac{1}{k+1}$

查看答案和解析>>

同步练习册答案