精英家教网 > 高中数学 > 题目详情
15.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,则f(k+1)等于(  )
A.f(k)+$\frac{1}{3(k+1)+1}$B.f(k)+$\frac{2}{3k+2}$
C.f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$D.f(k)+$\frac{1}{3k+4}$-$\frac{1}{k+1}$

分析 根据f(n)的解析式分别写出f(k)与f(k+1),即可得出结论.

解答 解:f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,
∴f(k)=$\frac{1}{k+1}$+$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{3k+1}$
f(k+1)=$\frac{1}{(k+1)+1}$+$\frac{1}{(k+1)+2}$+$\frac{1}{(k+1)+3}$+…+$\frac{1}{3(k+1)+1}$
=$\frac{1}{k+2}$+$\frac{1}{k+3}$+$\frac{1}{k+4}$+…+$\frac{1}{3k+4}$
=f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$.
故选:C.

点评 本题考查了根据函数解析式写出对应函数值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=x3-4x-a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x1<-2B.x2>0C.x3<1D.x3>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程$\sqrt{3}$cosx+sinx-a=0在区间[0,π]上恰有两个不等实根α,β,则α+β的值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3+bx2+cx,其导函数为f′(x)的部分值如表所示:
x-20138
f′(x)-10680-90
根据表中数据,回答下列问题:
(Ⅰ)实数c的值为6;当x=3时,f(x)取得极大值(将答案填写在横线上).
(Ⅱ)求实数a,b的值.
(Ⅲ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(3-a)x-2+a-2lnx(a∈R).
(Ⅰ)若a≤3,试讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)>x在(0,$\frac{1}{2}$)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在[a,b]上两个不同的零点,则称f(x)与g(x)的“关联区间”,若f(x)=$\frac{1}{3}{x^3}-{x^2}$-x与g(x)=2x+b的“关联区间”是[-3,0],则b的取值范围是(  )
A.[-9,0]B.$[0,\frac{5}{3}]$C.$[-9,\frac{5}{3}]$D.$[0,\frac{5}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将全体正整数排成一个三角形数阵:按照如图所示排列的规律:
(1)第7行从左到右的第3个数为24.
(2)第n行(n≥3)从左向右的第3个数为$\frac{{n}^{2}-n+6}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设正项数列{an}满足:a1=$\frac{1}{2}$,an+1=$\frac{1}{1+an}$,n∈N*
(1)证明:若an<$\frac{\sqrt{5}-1}{2}$,则an+1>$\frac{\sqrt{5}-1}{2}$;
(2)回答下列问题并说明理由:
是否存在正整数N,当n≥N时|an-$\frac{\sqrt{5}-1}{2}$|+|an+1-$\frac{\sqrt{5}-1}{2}$|<0.001恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某汽车生产企业上年度生产某一品牌汽车的投入成本为10万元/辆.出厂价为13万元/每辆,年销售量为5000辆,本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.7x,年销售量也相应增加,已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量).
(1)若每年销售量的比例为0.4x,写出本年度的年利润关于x的函数关系式;
(2)若年销售量关于x的函数为y=3240(-x2+2x+$\frac{5}{3}$),则当x为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

同步练习册答案