精英家教网 > 高中数学 > 题目详情
7.将全体正整数排成一个三角形数阵:按照如图所示排列的规律:
(1)第7行从左到右的第3个数为24.
(2)第n行(n≥3)从左向右的第3个数为$\frac{{n}^{2}-n+6}{2}$.

分析 先找到数的分布规律,求出第n-1行结束的时候一共出现的数的个数,再求第n行从左向右的第3个数,代入n=7可得.

解答 解:由排列的规律可得,第n-1行结束的时候共排了1+2+3+…+(n-1)=$\frac{(n-1)n}{2}$个数,
∴第n行从左向右的第3个数为$\frac{(n-1)n}{2}$+3=$\frac{{n}^{2}-n+6}{2}$,
把n=7代入可得第7行从左向右的第3个数为24,
故答案为:24,$\frac{{n}^{2}-n+6}{2}$.

点评 本题借助于一个三角形数阵考查等差数列的应用,考查归纳推理,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R)有极值点,则导函数f′(x)的图象可能是(  )
A.①③B.②③C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若△ABC为等腰三角形,∠ABC=$\frac{2}{3}$π,则以A,B为焦点且过点C的椭圆的离心率为$\frac{{\sqrt{3}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,则f(k+1)等于(  )
A.f(k)+$\frac{1}{3(k+1)+1}$B.f(k)+$\frac{2}{3k+2}$
C.f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$D.f(k)+$\frac{1}{3k+4}$-$\frac{1}{k+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{2}{x+1}$.
(1)试比较f(x)与1的大小;
(2)求证:ln(n+1)>$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2n+1}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx-1在x=-1处取得极值,且在点(0,-1)处的切线与直线2x-y=0平行.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=xf(x)+2x的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点A(3,1)作圆(x-2)2+(y-2)2=4的弦,则当弦长最短时弦所在的直线方程为(  )
A.x+y-4=0B.x-y+2=0C.x+y+4=0D.x-y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.以直角坐标系的原点为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位.已知:直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{\sqrt{3}}{2}t\end{array}$   (t为参数),曲线C的极坐标方程为(1+sin2θ)ρ2=2.
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,若点P为(1,0),求$\frac{1}{|AP{|}^{2}}$+$\frac{1}{|BP{|}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{3}$x3-2ax2+3a2x+b(a>0).
(1)当y=f(x)的极小值为1时,求b的值;
(2)若f(x)在区间[1,2]上是减函数,求a的范围.

查看答案和解析>>

同步练习册答案