分析 (1)求出函数的导数,得到函数的单调区间,从而求出f(3a)是函数的极小值,求出b的值即可;
(2)根据函数的单调性得到[1,2]⊆[a,3a],求出a的范围化简.
解答 解:(1)f′(x)=x2-4ax+3a2=(x-a)(x-3a),
令f′(x)≥0,解得:x≤a,x≥3a,
令f′(x)<0,解得:a<x<3a,
故f(x)在(-∞,a)递增,在(a,3a)递减,在(3a,+∞)递增,
由函数的单调性可知,函数在x=3a处取极小值,
即f(3a)=$\frac{1}{3}$(3a)3-2a(3a)2+3a23a+b=1,
所以b=1;
(2)f′(x)=x2-4ax+3a2=(x-a)(x-3a),
要使f(x)在区间[1,2]上是减函数,
则导数在[1,2]小于等于0,
即[1,2]⊆[a,3a],
故$\left\{\begin{array}{l}{3a≥2}\\{a≤1}\end{array}\right.$,
所以$\frac{2}{3}$≤a≤1.
点评 本题考查了函数的单调性、极值问题,考查导数的应用以及集合的包含关系,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -7 | C. | -9 | D. | -11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com