分析 (1)证明AC⊥平面PBC,即可证明平面PAC⊥平面PBC;
(2)利用等体积,即可求点P到平面ACE的距离.
解答 (1)证明:∵PC⊥底面ABCD,∴PC⊥AC,
又∵AC⊥BC,PC∩BC=C,
∴AC⊥平面PBC,
∵AC?平面PAC,∴平面PAC⊥平面PBC…(5分)
(2)解:∵点E为PB的中点,∴S△PCE=$\frac{1}{2}{S}_{△PCB}$=$\frac{1}{2}×\frac{1}{2}×2×\sqrt{2}$=$\frac{\sqrt{2}}{2}$…(7分)
由(1)得:AC⊥平面PBC,∴VA-PCE=$\frac{1}{3}×\frac{\sqrt{2}}{2}×\sqrt{2}$=$\frac{1}{3}$,
设点P平面ACE的距离为h.
则由等体积可得$\frac{1}{3}×(\frac{1}{2}×\sqrt{2}×\frac{\sqrt{6}}{2})h$=$\frac{1}{3}$解得:h=$\frac{2\sqrt{3}}{3}$.
点P到平面ACE的距离为$\frac{2\sqrt{3}}{3}$…(12分)
点评 本题考查线面垂直、面面垂直的判定,考查等体积方法求点到平面的距离,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 57 | B. | 59 | C. | 61 | D. | 63 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com