精英家教网 > 高中数学 > 题目详情
4.设函数y=$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$的定义域为P,不等式x2-2x≤0的解集为Q,则x∈P是x∈Q的(  )条件.
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

分析 先求出集合P,Q,根据集合之间的关系结合充分必要条件的定义证明即可.

解答 解:由函数y=$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$,
得:0<x-1≤1,解得:1<x≤2,
∴P=(1,2],
解不等式x2-2x≤0,
得:0≤x≤2,
∴Q=[0,2],
∴x∈P是x∈Q的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足:a1=2,a1+a2+a3=12,且an-2an+1+an+2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{4}{a{{\;}_{n}a}_{n+1}}$+2n-1an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是递增的等差数列,其中a2,a3是方程x2-5x+6=0的根,Sn是数列{an}的前n项和.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{S}_{n}}$求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.口袋中装有大小质地都相同,编号为1,2,3,4,5的求各一个,现从中一次性随机地取出两个球,设取出的两球中较大的编号为X,则随机变量X的数学期望是(  )
A.3B.4C.4.5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.小明家住C区,他的学校在D区,从家骑自行车到学校的路有L1、L2.两条路线(如图),路线L1上有A1、A2、A3三个路口,各路口遇到红灯的概率均为$\frac{2}{3}$;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为$\frac{3}{4}$、$\frac{3}{5}$.         
(I)若走L1,路线,求至少遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数X的数学期
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助小明从上述两条路线中选择一条最好的上学路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是定义在R上的函数,且f(x)=f(x+2)恒成立,当x∈(-2,0)时,f(x)=x2,则f(2015)的值为(  )
A.5B.13C.49D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知条件p:函数f(x)=log${\;}_{10-{a}^{2}}$x在(0,+∞)上单调递增;条件q:对于任意实数x.不等式x2-3ax+2a2-$\frac{1}{2}$+a>0恒成立.如果“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
x24568
y3040605070
(Ⅰ)画出散点图;
(Ⅱ)求回归直线方程;(参考数据:$\sum_{i=1}^{5}{{x}_{i}}^{2}$=145,$\sum_{i=1}^{5}{{y}_{i}}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380)
(Ⅲ)试预测广告费支出为10万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知O为△ABC的外心,AB=2,AC=3,如果$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$,其中x、y满足x+2y=1,则cos∠BAC=$\frac{3}{4}$或$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案