精英家教网 > 高中数学 > 题目详情
16.已知条件p:函数f(x)=log${\;}_{10-{a}^{2}}$x在(0,+∞)上单调递增;条件q:对于任意实数x.不等式x2-3ax+2a2-$\frac{1}{2}$+a>0恒成立.如果“p且q”为真命题,求实数a的取值范围.

分析 根据对数函数的单调性便有10-a2>1,从而可得出-3<a<3,而由不等式${x}^{2}-3ax+2{a}^{2}-\frac{1}{2}+a>0$恒成立,便可得到△<0,这样可解出$2-\sqrt{2}<a<2+\sqrt{2}$,然后根据p且q为真命题,便得到p真q真,从而解不等式组$\left\{\begin{array}{l}{-3<a<3}\\{2-\sqrt{2}<a<2+\sqrt{2}}\end{array}\right.$即可得出实数a的取值范围.

解答 解:f(x)在(0,+∞)上单调递增;
∴10-a2>1;
∴a2<9;
∴-3<a<3;
不等式${x}^{2}-3ax+2{a}^{2}-\frac{1}{2}+a>0$恒成立;
∴$△=9{a}^{2}-4(2{a}^{2}-\frac{1}{2}+a)={a}^{2}-4a+2<0$;
解得$2-\sqrt{2}<a<2+\sqrt{2}$;
条件p:-3<a<3,条件q:$2-\sqrt{2}<a<2+\sqrt{2}$;
∵p且q为真命题;
∴p,q都为真命题;
∴$\left\{\begin{array}{l}{-3<a<3}\\{2-\sqrt{2}<a<2+\sqrt{2}}\end{array}\right.$;
∴$2-\sqrt{2}<a<3$;
∴实数a的取值范围为$(2-\sqrt{2},3)$.

点评 考查对数函数的单调性,解一元二次不等式,一元二次不等式ax2+bx+c>0的解集为R时,判别式△的取值情况,以及p且q真假和p,q真假的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上表补充完整(不用写计算过程);
(2)请问有多大的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)是偶函数,且f(2)=5,那么f(2)+f(-2)的值为(  )
A.0B.2C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数y=$\sqrt{lo{g}_{\frac{1}{2}}(x-1)}$的定义域为P,不等式x2-2x≤0的解集为Q,则x∈P是x∈Q的(  )条件.
A.充分不必要B.必要不充分
C.充分必要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知圆M的半径为2,点P与圆心M的距离为4,正方形ABCD是圆M的内接四边形,E,F是边AB,AD的中点,当正方形ABCD绕圆心M转动时,$\overrightarrow{PF}$•$\overrightarrow{ME}$的取值范围是(  )
A.[-2,2]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.[-4,4]D.[-4$\sqrt{2}$,4$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知Sn为等差数列{an}的前n项和,a2+a7=16,S10=100.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:${b_n}={a_n}•{2^{\frac{{{a_n}-1}}{2}}}$,求数列{bn}的前n项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两个向量$\vec a=(2,1),\vec b=(-1,x)$,若$\vec a⊥(2\vec a-\vec b)$,则x 等于(  )
A.-12B.-6C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC的面积为2,E,F是AB,AC的中点,P为直线EF上任意一点,则$\overrightarrow{PB}•\overrightarrow{PC}+{\overrightarrow{BC}^2}$的最小值为(  )
A.2B.3C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等比数列{an}的公比q>1,其前n项和为Sn.若S4=2S2+1,则S6的最小值为2$\sqrt{3}$+3.

查看答案和解析>>

同步练习册答案