精英家教网 > 高中数学 > 题目详情

同时抛掷4枚均匀的硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为.
(1)求抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率;
(2)求的数学期望和方差.

(1)抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率是 ;(2)的数学期望和方差分别为.

解析试题分析:(1)这是一个简单的古典概型的概率计算,在计算事件包含的基本事件个数时要注意是,不要出错;(2)这是在(1)的基础上产生的独立重复实验,需要用到二项分布的概率计算公式以及期望和方差计算公式,关键是要能通过审题,认识它是独立重复实验,此时如果公式记忆没问题,那就不是难题了.
试题解析:(1)设“抛掷4枚硬币,恰好2枚正面向上,2枚反面向上”为事件        1分
∵抛掷4枚硬币的基本事件总数是,其中事件个基本事件         3分
                                                    5分
∴抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率是                     7分
(2)随机变量的取值为.                                         8分
由(1)可得:抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率是
又因为所抛掷的次独立,∴                                    10分
)                         12分
                     14分
考点:1.独立重复实验;2.二项分布的概率计算公式以及期望和方差计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.

(1)求的值;
(2)分别求出甲、乙两组数据的方差
并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.
(注:方差为数据的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:
(1)这三列火车恰好有两列正点到达的概率;
(2)这三列火车至少有一列正点到达的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:

 
关注NBA
不关注NBA
合  计
男   生
 
6
 
女   生
10
 
 
合   计
 
 
48
 
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3
⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关?
⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望.
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了了解青少年视力情况,某市从高考体检中随机抽取16名学生的视力进行调查,经医生用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(1)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(2)以这16人的样本数据来估计该市所有参加高考学生的的总体数据,若从该市参加高考的学生中任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某家电专卖店在五一期间设计一项有奖促销活动,每购买一台电视,即可通过电脑产生一组3个数的随机数组,根据下表兑奖:

奖次
一等奖
二等奖
三等奖
随机数组的特征
3个1或3个0
只有2个1或2个0
只有1个1或1个0
资金(单位:元)
5m
2m
m
 
商家为了了解计划的可行性,估计奖金数,进行了随机模拟试验,并产生了20个随机数组,试验结果如下:
247,235,145,124,754,353,296,065,379,118,520,378,218,953,254,368,027,111,358,279.
(1)在以上模拟的20组数中,随机抽取3组数,至少有1组获奖的概率;
(2)根据以上模拟试验的结果,将频率视为概率:
(ⅰ)若活动期间某单位购买四台电视,求恰好有两台获奖的概率;
(ⅱ)若本次活动平均每台电视的奖金不超过260元,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表所示.

 
CD段
EF段
GH段
堵车概率



平均堵车时间
(单位:小时)

2
1
 
经调查发现,堵车概率上变化,上变化.
在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计段平均堵车时间,调查了100名走甲线路的司机,得到下表数据.
堵车时间(单位:小时)
频数
[0,1]
8
(1, 2]
6
(2, 3]
38
(3, 4]
24
(4, 5]
24
 
(1)求段平均堵车时间的值;
(2)若只考虑所花汽油费的期望值大小,为了节约,求选择走甲线路的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.
(1)从中同时摸出两个球,求两球颜色恰好相同的概率;
(2)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率    

查看答案和解析>>

同步练习册答案