精英家教网 > 高中数学 > 题目详情
10.某班54个学生中,参加美术课外活动小组的有32人,参加舞蹈课外活动小组的有24人,这两个课外活动小组都没有参加的有15人,从该班中任意抽取1名同学,他参加了两个课外活动小组的概率是多少?

分析 设两个课外活动小组都参加的人有x人,建立文氏图,得到15+(32-x)+(24-x)+x=54,求出x=17,有此能求出从该班中任意抽取1名同学,他参加了两个课外活动小组的概率.

解答 解:v某班54个学生中,参加美术课外活动小组的有32人,
参加舞蹈课外活动小组的有24人,这两个课外活动小组都没有参加的有15人,
设两个课外活动小组都参加的人有x人,
如图,建立文氏图,
∴15+(32-x)+(24-x)+x=54,
解得x=17,
∴从该班中任意抽取1名同学,他参加了两个课外活动小组的概率是p=$\frac{17}{54}$.

点评 本题考查概率的求法,考查古典概型、集合等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且满足Sn=2an-n,求数列{an}的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.
思路1:先设n的值为1,根据已知条件,计算出a1=1,a2=3,a3=7.
猜想:an=2n-1
然后用数学归纳法证明.证明过程如下:
①当n=1时,a1=21-1,猜想成立
②假设n=k(k∈N*)时,猜想成立,即ak=2k-1.
那么,当n=k+1时,由已知Sn=2an-n,得Sk+1=2ak+1-(k+1).
又Sk=2ak-k,两式相减并化简,得ak+1=2k+1-1(用含k的代数式表示).
所以,当n=k+1时,猜想也成立.
根据①和②,可知猜想对任何k∈N*都成立.
思路2:先设n的值为1,根据已知条件,计算出a1=1.
由已知Sn=2an-n,写出Sn+1与an+1的关系式:Sn+1=2an+1-(n+1),
两式相减,得an+1与an的递推关系式:an+1=2an+1.
整理:an+1+1=2(an+1).
发现:数列{an+1}是首项为2,公比为2的等比数列.
得出:数列{an+1}的通项公式an+1=2n,进而得到an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x2-|x|的值域是[$-\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合$A=\{x∈Z|\frac{x+1}{x-2}≤0\}$,则集合A的子集的个数为(  )
A.7B.8C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足${a_n}={2^n}$,则数列{an•bn}满足对任意的n∈N+,都有b1an+b2an-1+…+bna1=${2^n}-\frac{n}{2}-1$,则数列{an•bn}的前n项和Tn=$\frac{(n-1)•{2}^{n}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
①cos211°+sin241°-cos11°sin41°;
②cos222°+sin252°-cos22°sin52°;
③cos230°+sin260°-cos30°sin60°;
④cos244°+sin244°-cos44°sin74°;
⑤cos255°+sin285°-cos55°sin85°.
将该同学的发现推广三角恒等式为cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x>3,则函数$f(x)=x+\frac{4}{x-3}$取得最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.自然数列按如图规律排列,若2017在第m行第n个数,则log2$\frac{n}{m}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,则a0+a1+a2+…+a7=-1.

查看答案和解析>>

同步练习册答案