分析 这个图可以看出,每一行开始的数字比前一行结束的数字多1,而且是成以1为首项、1为公差的等差数列增长的,每一行的数字个数等于行数;那么每一行开头的数字可以用这个式表示1+$\frac{1}{2}$n(n-1);所以第63行的第一个数是1954,而从1954再向后数63就是2017,所以2017在第63行,左起第63个数.进而得到答案.
解答 解:因为第63行的第一个数是:
1+$\frac{1}{2}$×63×(63-1),
=1954,
而2017-1954=63,
所以58+1=60;
数字2017是第63行左起第63个数;
即m=63,n=63,
则log2$\frac{n}{m}$=0,
故答案为:0
点评 本题考查的知识点是归纳推理,解答的关键是根据给出的表,找出规律,再由规律解决问题.
科目:高中数学 来源: 题型:选择题
| A. | 2n | B. | 2n | C. | $\frac{n(n+1)}{2}$ | D. | n+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2-1≤0 | B. | ?x∈R,x2-1>0 | C. | ?x0∈R,x02-1>0 | D. | ?x0∈R,x02-1<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m=4 | B. | m≠4 | C. | m≠-1 | D. | m∈R |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com