精英家教网 > 高中数学 > 题目详情
8.如图,三棱锥S-ABC中,点M,N,P分别为棱SA,SB,SC的中点,且∠PMN=90°.
(1)求证:平面PMN∥平面ABC;
(2)若平面SAC⊥平面ABC,求证:平面SAC⊥平面SAB.

分析 (1)推导出MP∥AC,MN∥AB,从而MP∥平面ABC,同理,MN∥平面ABC,由此能证明平面PMN∥平面ABC.
(2)由MP∥AC,MN∥BA,推导出∠CAB=∠PMN=90°,从而AB⊥AC,进而AB⊥平面SAC,由此能证明平面SAC⊥平面SAB.

解答 证明:(1)∵点M,N,P分别为SA、SB、SC的中点,
∴MP∥AC,MN∥AB,
又MP?平面ABC,AC?平面ABC,
∴MP∥平面ABC,
同理,MN∥平面ABC,
又MP∩MN=M,MP、MN?平面PMN,
∴平面PMN∥平面ABC.
(2)由(1)知MP∥AC,MN∥BA,
又∠PMN与∠CAB的对应边方向相同,
∴∠CAB=∠PMN=90°,∴AB⊥AC,
∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC,AB?平面ABC,
∴AB⊥平面SAC,又AB?平面SAB,
∴平面SAC⊥平面SAB.

点评 本题考查面面平行的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合$A=\{x∈Z|\frac{x+1}{x-2}≤0\}$,则集合A的子集的个数为(  )
A.7B.8C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.自然数列按如图规律排列,若2017在第m行第n个数,则log2$\frac{n}{m}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>0,b>0,且a+b=4则下列不等式中恒成立的是(  )
A.a2+b2≥8B.ab≥4C.a2+b2≤8D.ab≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=ex,y=e-x和直线x=1围成的图形面积是(  )
A.e+$\frac{1}{e}$-2B.e-$\frac{1}{e}$+2C.e+$\frac{1}{e}$D.e-$\frac{1}{e}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合$A=\left\{{\frac{π}{7},\frac{2π}{7},\frac{3π}{7},\frac{4π}{7},\frac{5π}{7},\frac{6π}{7}}\right\}$﹒
(1)若从集合A中任取一对角,求至少有一个角为钝角的概率;
(2)记$\overrightarrow a=(1+cosθ,1+sinθ)$,求从集合A中任取一个角作为θ的值,且使得关于x的一元二次方程${x^2}-2|{\overrightarrow a}|x+5=0$有解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,则a0+a1+a2+…+a7=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来; 若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为$\frac{11}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体体积是(  )
A.$\frac{{(8+π)\sqrt{3}}}{3}$B.$\frac{{(8+2π)\sqrt{3}}}{6}$C.$\frac{{(8+π)\sqrt{3}}}{6}$D.$\frac{{(4+π)\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案