精英家教网 > 高中数学 > 题目详情
16.若a>0,b>0,且a+b=4则下列不等式中恒成立的是(  )
A.a2+b2≥8B.ab≥4C.a2+b2≤8D.ab≤2

分析 根据基本不等式的性质求出ab≤4判断出A正确,B,C,D错误.

解答 解::∵a>0,b>0,且a+b=4,
∴ab≤($\frac{a+b}{2}$)2=4,故B,D错误,
∴a2+b2=(a+b)2-2ab≥16-8=8,
故A正确,B,C,D错误;
故选:A.

点评 本题考查不等式的基本性质,解题时要注意均值不等式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.以点(0,-2)为圆心,半径是3的圆的方程为x2+(y+2)2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(xi,yi)(i=1,2,…,6),如表所示:
试销单价x(元)456789
产品销量y(件)q8483807568
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程$\widehaty=\widehatbx+\widehata$;可供选择的数据:$\sum_{i=1}^6{{x_i}{y_i}}=3050$,$\sum_{i=1}^6{{x_i}^2}=271$
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的线性回归方程得到的与xi对应的产品销量的估计值.当销售数据(xi,yi)对应的残差的绝对值$|\widehat{y_i}-{y_i}|≤1$时,则将销售数据(xi,yi)称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数ξ的分布列和数学期望E(ξ).
(参考公式:线性回归方程中$\widehatb$,$\widehata$的最小二乘估计分别为$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从[0,2]之间选出两个数,这两个数的平方和小于1的概率是$\frac{π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题p:“?x0∈R“,x0-1≤0的否定¬p为(  )
A.?x∈R,x2-1≤0B.?x∈R,x2-1>0C.?x0∈R,x02-1>0D.?x0∈R,x02-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从1=12、1+3=22、1+3+5=32、1+3+5+7=42、…,猜想得到1+3+…+(2n-1)=(  )
A.nB.2n-1C.n2D.(n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱锥S-ABC中,点M,N,P分别为棱SA,SB,SC的中点,且∠PMN=90°.
(1)求证:平面PMN∥平面ABC;
(2)若平面SAC⊥平面ABC,求证:平面SAC⊥平面SAB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定积分${∫}_{-1}^{1}$(2x+sinx)dx的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三角形ABC中,已知c=10,A=45°,C=30°,求边b和三角形的面积S.

查看答案和解析>>

同步练习册答案