精英家教网 > 高中数学 > 题目详情
1.从1=12、1+3=22、1+3+5=32、1+3+5+7=42、…,猜想得到1+3+…+(2n-1)=(  )
A.nB.2n-1C.n2D.(n-1)2

分析 直接由题意可得答案.

解答 解:从1=12、1+3=22、1+3+5=32、1+3+5+7=42、…,猜想得到1+3+…+(2n-1)=n2
故选:C

点评 本题考查了归纳推理的问题,关键找到规律,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.(x+2$\sqrt{x}$)5 的展开式中,x3的系数是80.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中,正确的是(  )
A.若a>b,c>d,则ac>bcB.若ac>bc,则a>b
C.若$\frac{a}{{c}^{2}}$<$\frac{b}{{c}^{2}}$,则a<bD.若a>b,c>d,则a-c>b-d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>-xf′(x)恒成立,则函数g(x)=xf(x)的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>0,b>0,且a+b=4则下列不等式中恒成立的是(  )
A.a2+b2≥8B.ab≥4C.a2+b2≤8D.ab≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当实数m为何值时,复数z=(m2+m-2)+(m2-1)i是:
①实数;            ②虚数;           ③纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合$A=\left\{{\frac{π}{7},\frac{2π}{7},\frac{3π}{7},\frac{4π}{7},\frac{5π}{7},\frac{6π}{7}}\right\}$﹒
(1)若从集合A中任取一对角,求至少有一个角为钝角的概率;
(2)记$\overrightarrow a=(1+cosθ,1+sinθ)$,求从集合A中任取一个角作为θ的值,且使得关于x的一元二次方程${x^2}-2|{\overrightarrow a}|x+5=0$有解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\frac{1}{\sqrt{1-lo{g}_{3}({2}^{x}-1)}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.我们易知$\sqrt{2}-1>2-\sqrt{3},\sqrt{3}-\sqrt{2}>\sqrt{5}-2,2-\sqrt{3}>\sqrt{6}-\sqrt{5},…$,从前面n个不等式类比得更一般的结论为(  )
A.$\sqrt{n+1}-n>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$B.$\sqrt{n+1}-n>\sqrt{n+3}-n({n∈{N^*}})$
C.$\sqrt{n+1}-\sqrt{n}>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$D.$\sqrt{n+1}-\sqrt{n}>n-\sqrt{n+2}({n∈{N^*}})$

查看答案和解析>>

同步练习册答案