精英家教网 > 高中数学 > 题目详情
已知圆动圆与圆外切并与圆内切,圆心的轨迹为曲线.
(1)求的方程;
(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.
(1) (2)

试题分析:解:(1)图略:设动圆半径设为动圆与圆外切,即:
动圆与圆内切,即两式相加得:
的轨迹是以为焦点的椭圆, 
因焦点在x轴上,所以的轨迹方程是,
(2)动圆的半径设为
代入整理得 此时圆心的方程是 
与圆,圆都相切,若倾斜角等于为所求;
倾斜角不等于 
与圆,圆都相切,
,且   整理(1)(2)得

联立(3)(4),得
切线方程为,由于对称性,两切线与椭圆相交的弦长相等
不妨联立整理得:
(求根公式,两点距离也可以);(用另一条弦长公式也可以)
,综上(略)
点评:关于曲线的大题,第一问一般是求出曲线的方程,第二问常与直线结合起来,当涉及到交点时,常用到根与系数的关系式:)。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点为动点,且直线与直线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线相交于不同的两点.若点轴上,且,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的离心率是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求为坐标原点)面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点在轴上,离心率,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴在轴上,且焦距为4,则等于(  )
A.4B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,若
右顶点,则常数           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦距是2,则=(    )
A.5B.3C.5或3D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知, 是椭圆的两个焦点,点在此椭圆上且,则的面积等于(    )
A.B.C.2D.

查看答案和解析>>

同步练习册答案