精英家教网 > 高中数学 > 题目详情
4.设x,y,z均为正实数,则三个数$\frac{x}{z}$+$\frac{x}{y}$,$\frac{y}{x}$+$\frac{y}{z}$,$\frac{z}{x}$+$\frac{z}{y}$(  )
A.都大于2B.都小于2
C.至多有一个小于2D.至少有一个不小于2

分析 根据x,y,z均为正实数,由基本不等式即可得出$\frac{x}{z}+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}≥6$,这样显然可得出三个数$\frac{x}{z}+\frac{x}{y},\frac{y}{x}+\frac{y}{z},\frac{z}{x}+\frac{z}{y}$至少有一个不小于2.

解答 解:∵$\frac{x}{z}+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=(\frac{x}{z}+\frac{z}{x})$$+(\frac{x}{y}+\frac{y}{x})+(\frac{y}{z}+\frac{z}{y})≥2+2+2=6$;
∴$\frac{x}{z}+\frac{x}{y},\frac{y}{x}+\frac{y}{z},\frac{z}{x}+\frac{z}{y}$中至少有一个不小于2.
故选D.

点评 考查基本不等式:$a+b≥2\sqrt{ab}$,a,b∈R*,注意等号成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知圆C:x2+y2-2x-24=0,直线ax-y+5=0(a>0)与圆交于A,B两点.
(Ⅰ)求实数a的取值范围;
(Ⅱ)若弦AB的垂直平分线l过点P(-2,4),求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sinx(sinx-cosx).
(1)求函数f(x)的最小正周期和最小值;
(2)若$A∈(0,\frac{π}{4})$,且$f(\frac{A}{2})=1-\frac{{4\sqrt{2}}}{5}$,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:4x+ay-5=0与直线l′:x-2y=0相互垂直,圆C的圆心与点(2,1)关于直线l对称,且圆C过点M(-1,-1).
(1)求直线l与圆C的方程;
(2)已知N(2,0),过点M作两条直线分别与圆C交于P,Q两点,若直线MP,MQ的斜率满足kMP+kMQ=0,求证:直线PQ的斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=lnx-3ax有两个零点,则a的取值范围是(0,$\frac{1}{3e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是(  )
A.a<-1B.a>-1C.a>-$\frac{1}{e}$D.a<-$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.$(θ为参数)所表示曲线的准线方程是$y=-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线l的极坐标方程为2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,点A的极坐标为(2$\sqrt{2}$,$\frac{7π}{4}$),则点A到直线l的距离为(  )
A.$\frac{5}{3}\sqrt{3}$B.$\frac{5}{2}\sqrt{3}$C.$\frac{5}{3}\sqrt{2}$D.$\frac{5}{2}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个几何体的三视图如图所示,则此几何体的体积是2.

查看答案和解析>>

同步练习册答案