精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=ax2-1的图象在点A(1,f(1))处的切线l与直线8x-y+2=0平行,则a=4,若数列$\left\{{\frac{1}{f(n)}}\right\}$的前n项和为Sn,那么S2013=$\frac{2013}{4027}$.

分析 求出函数的导数,求得切线的斜率,由两直线平行的条件可得a=4,再由裂项相消求和,可得所求值.

解答 解:函数f(x)=ax2-1的导数为f′(x)=2ax,
即有在点A(1,f(1))处的切线斜率为k=2a,
由切线l与直线8x-y+2=0平行,
则2a=8,解得a=4,
f(x)=4x2-1,
即有$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
则S2013=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{4025}$-$\frac{1}{4027}$)
=$\frac{1}{2}$×(1-$\frac{1}{4027}$)=$\frac{2013}{4027}$.
故答案为:4,$\frac{2013}{4027}$.

点评 本题考查导数的运用:求切线的斜率,同时考查数列的求和方法:裂项相消求和,运用两直线平行的条件和作差求和是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知等差数列{an},{bn}中的前几项和分别是Sn,Tn.若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{n}{n+1}$,则$\frac{{a}_{7}}{{b}_{7}}$=$\frac{13}{14}$,$\frac{{a}_{10}}{{b}_{5}}$=$\frac{19}{10}$,$\frac{{S}_{10}}{{T}_{5}}$=$\frac{10}{3}$,$\frac{{a}_{10}}{{T}_{7}}$=$\frac{19}{56}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(文)已知函数f(x)=k(x-1)ex+x2
(1)求导函数f′(x);
(2)当k=-$\frac{1}{e}$时,求函数f(x)在点(1,1)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知曲线y=x3-x在点(x0,y0)处的切线平行于直线2x-y-2=0,则x0=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线y=e${\;}^{\frac{1}{2}x}$在点(4,e2)处的切线的纵截距为(  )
A.-e2B.-4e2C.2e2D.$\frac{9}{2}$e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\frac{1}{b}$eax的图象在x=0处的切线l与圆C:x2+y2=1相离,则P(a,b)与圆C的位置关系是(  )
A.在圆内B.在圆外C.在圆上D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{3}m{x^3}-(m+1){x^2}$+(m+2)x,其中m<0.
(1)求f′(1)的值;
(2)求f(x)的单调递增区间;
(3)当x∈[-1,1],函数y=f(x)的图象上任意一点的切线斜率恒大于m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是①②④⑤(写出所有正确命题的编号).
①当0<CQ<$\frac{1}{2}$时,S为四边形;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当$\frac{3}{4}$<CQ<1时,S为六边形;
④当CQ=$\frac{3}{4}$时,S与C1D1的交点R满足C1R=$\frac{1}{3}$;
⑤当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a(x+1)ln(x+1)图象上的点(e2-1,f(e2-1))处的切线与直线x+3y+1=0垂直(e=2.71828).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求函数y=2f(x-1)与y=x3-mx(m>1)的图象在区间[$\frac{1}{e}$,e]上交点的个数;
(Ⅲ)证明:当m>n>0时,(1+emen<(1+enem

查看答案和解析>>

同步练习册答案