精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=2x+2ax+b且f(-1)=$\frac{5}{2}$,f(0)=2.
(1)求a,b的值; 判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)上的单调性;
(3)若关于x的方程mf(x)=2-x在[-1,1]上有解,求实数m的取值范围.

分析 (1)由已知中f(-1)=$\frac{5}{2}$,f(0)=2,构造方程求出a,b的值,进而根据奇偶性的定义,可得结论;
(2)证法一:设x1,x2是区间(0,+∞)上的两个任意实数,且x1<x2,作差判断f(x1),f(x2)的大小,可得结论;
证法二:求导,根据x∈(0,+∞)时,f′(x)>0恒成立,可得:函数f(x)在(0,+∞)上为单调递增函数;
(3)若关于x的方程mf(x)=2-x在[-1,1]上有解,即m=$\frac{{2}^{-x}}{{2}^{x}+{2}^{-x}}$在[-1,1]上有解,求出f(x)=$\frac{{2}^{-x}}{{2}^{x}+{2}^{-x}}$的值域,可得答案.

解答 解:(1)∵f(-1)=$\frac{5}{2}$,f(0)=2.
∴$\frac{1}{2}$+2-a+b=$\frac{5}{2}$,1+2b=2,
解得:a=-1,b=0,
∴f(x)=2x+2-x; 
函数的定义域为R,
且f(-x)=2-x+2x=f(x),
故函数为偶函数,
(2)证法一:设x1,x2是区间(0,+∞)上的两个任意实数,且x1<x2
于是f(x2)-f(x1)=(${2}^{{x}_{1}}+{2}^{-{x}_{1}}$)-(${2}^{{x}_{2}}+{2}^{-{x}_{2}}$)=(${2}^{{x}_{1}}-{2}^{{x}_{2}}$)$\frac{{2}^{{x}_{1}}•{2}^{{x}_{2}}-1}{{2}^{{x}_{1}}•{2}^{{x}_{2}}}$.
因为x2>x1>0,所以${2}^{{x}_{1}}>1$,${2}^{{x}_{2}}>1$,${2}^{{x}_{1}}-{2}^{{x}_{2}}<0$,
所以f(x2)-f(x1)>0,所以f(x1)<f(x2),
所以函数f(x)在(0,+∞)上为单调增函数.
证法二:∵f(x)=2x+2-x
∴f′(x)=ln2•(2x+2-x).
当x∈(0,+∞)时,
f′(x)>0恒成立,
故函数f(x)在(0,+∞)上为单调递增函数;
(3)若关于x的方程mf(x)=2-x在[-1,1]上有解,
即m=$\frac{{2}^{-x}}{{2}^{x}+{2}^{-x}}$在[-1,1]上有解,
令f(x)=$\frac{{2}^{-x}}{{2}^{x}+{2}^{-x}}$=$\frac{1}{{2}^{2x}+1}$,
则f(x)∈[$\frac{1}{5}$,$\frac{4}{5}$],
故m∈[$\frac{1}{5}$,$\frac{4}{5}$].

点评 本题考查的知识点是函数单调性的证明与应用,利用导数研究函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数的茎叶图如图:
(1)求甲命中个数的中位数和乙命中个数的众数;
(2)通过计算,比较甲乙两人的罚球水平.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图所示的程序框图,若输入a的值为$\frac{8}{17}$,则输出的k值是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b∈R,条件p:“a>b>0”,条件q:“2a>2b+1”,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)对任意实数x满足f(x)=-f(x+2),且当0≤x≤2时,f(x)=x(x-2),则f(-2017)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{1}{{{2^x}+1}}$,则f(log23)+f(log2$\frac{1}{3}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC的内角A,B满足$\frac{sinB}{sinA}$=cos(A+B),则tanB的最大值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,已知圆C:x2+y2-4x=0及点A(-1,0),B(1,2)
(1)若直线l平行于AB,与圆C相交于M,N两点,MN=AB,求直线l的方程;
(2)在圆C上是否存在点P,使得PA2+PB2=12?若存在,求点P的个数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.P为抛物线y2=-4x上一点,A(0,1),则P到此抛物线的准线的距离与P到点A的距离之和的最小值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案