精英家教网 > 高中数学 > 题目详情
3.阅读如图所示的程序框图,若输入a的值为$\frac{8}{17}$,则输出的k值是(  )
A.9B.10C.11D.12

分析 根据程序框图的流程,计算运行n次的结果,根据输入a=$\frac{8}{17}$,判断n满足的条件,从而求出输出的k值.

解答 解:由程序框图知第一次运行s=0+$\frac{1}{1×3}$,k=2;
第二次运行s=0+$\frac{1}{1×3}$+$\frac{1}{3×5}$,k=3;

∴第n次运行s=0+$\frac{1}{1×3}$+$\frac{1}{3×5}$+…+$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}-\frac{1}{5}$+…+$\frac{1}{2n-1}-\frac{1}{2n+1}$)=$\frac{1}{2}$×(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
当输入a=$\frac{8}{17}$时,由n>a得n>8,程序运行了9次,输出的k值为10.
故选:B.

点评 本题考查了直到型循环结构的程序框图,由程序框图判断程序运行的功能,用裂项相消法求和是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列四种说法中:
①有两个面平行,其余各面都是平行四边形的几何体叫棱柱
②相等的线段在直观图中仍然相等
③一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥
④用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台
正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在(0,+∞)上的函数f(x)满足:$\frac{{x}_{1}f({x}_{1})-{x}_{2}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且f(2)=4,则不等式f(x)-$\frac{8}{x}$>0的解集为(  )
A.(2,+∞)B.(0,2)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=sin2x+$\sqrt{3}$sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$ 的夹角为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得表:
日需求量n89101112
频数101015105
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A,求P(A)的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知平面α截一球面得圆M,过圆M的圆心的平面β与平面α所成二面角的大小为60°,平面β截该球面得圆N,若该球的表面积为64π,圆M的面积为4π,则圆N的半径为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=2x+2ax+b且f(-1)=$\frac{5}{2}$,f(0)=2.
(1)求a,b的值; 判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)上的单调性;
(3)若关于x的方程mf(x)=2-x在[-1,1]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),且0<α<β<π,则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案