精英家教网 > 高中数学 > 题目详情
11.函数f(x)=sin2x+$\sqrt{3}$sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

分析 (1)利用二倍角公式以及两角和与差的三角函数化简,然后通过正弦函数的单调增区间求解即可.
(2)求出相位的范围,利用正弦函数的有界性,求解函数的值域即可.

解答 解:(1)$f(x)={sin^2}x+\sqrt{3}sinxcosx=\frac{1-cos2x}{2}+\frac{{\sqrt{3}}}{2}sin2x=sin(2x-\frac{π}{6})+\frac{1}{2}$…(2分)
令$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2}$解得$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3}$…(5分)
f(x)的递增区间为$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}](k∈Z)$…(6分)
(2)∵$0≤x≤\frac{π}{2}$,∴$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$…(8分)
∴$-\frac{1}{2}≤sin(2x-\frac{π}{6})≤1$,∴$0≤sin(2x-\frac{π}{6})+\frac{1}{2}≤\frac{3}{2}$…(10分)
∴f(x)的值域是$[{0,\frac{3}{2}}]$…(12分)

点评 本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知数列{an}是递增数列,且对于任意n∈N*,an=n2+2λn+1,则实数λ的取值范围是(  )
A.λ>-1B.λ<-1C.λ>-$\frac{3}{2}$D.λ<-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲、乙两人练习罚球,每人练习6组,每组罚球20个,命中个数的茎叶图如图:
(1)求甲命中个数的中位数和乙命中个数的众数;
(2)通过计算,比较甲乙两人的罚球水平.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|-2<x<4},B={-2,1,2,4},则A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是(  )
A.8cm2B.$4\sqrt{3}$ cm2C.12 cm2D.$4+4\sqrt{3}$ cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z满足(5+12i)z=169,则$\overline{z}$=(  )
A.-5-12iB.-5+12iC.5-12iD.5+12i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图所示的程序框图,若输入a的值为$\frac{8}{17}$,则输出的k值是(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b∈R,条件p:“a>b>0”,条件q:“2a>2b+1”,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,已知圆C:x2+y2-4x=0及点A(-1,0),B(1,2)
(1)若直线l平行于AB,与圆C相交于M,N两点,MN=AB,求直线l的方程;
(2)在圆C上是否存在点P,使得PA2+PB2=12?若存在,求点P的个数;若不存在,说明理由.

查看答案和解析>>

同步练习册答案