精英家教网 > 高中数学 > 题目详情
19.设集合A={x|-2<x<4},B={-2,1,2,4},则A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

分析 直接利用交集的定义求解即可.

解答 解:集合A={x|-2<x<4},B={-2,1,2,4},则A∩B={1,2}.
故选:A.

点评 本题考查交集的运算法则的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知M(2m+3,m)、N(m-2,1),则当m∈{-5}时,直线MN的倾斜角为直角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二进制数101101110(2)化为十进制数是54,再化为八进制数是66(8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+$\frac{a}{x}$.
(1)判断f(x)的奇偶性并说明理由;
(2)当a=16时,判断f(x)在x∈(0,2]上的单调性并用定义证明;
(3)试判断方程x3-2016x+16=0在区间(0,+∞)上解的个数并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在(0,+∞)上的函数f(x)满足:$\frac{{x}_{1}f({x}_{1})-{x}_{2}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且f(2)=4,则不等式f(x)-$\frac{8}{x}$>0的解集为(  )
A.(2,+∞)B.(0,2)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$则2x+4y的最小值是(  )
A.6B.-6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=sin2x+$\sqrt{3}$sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得表:
日需求量n89101112
频数101015105
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A,求P(A)的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知全集U={-1,0,1,2},集合A={-1,2},则∁UA={0,1}.

查看答案和解析>>

同步练习册答案