分析 (1)对a分类讨论,计算f(-x)与±f(x)的关系即可判断出奇偶性.
(2)当a=16时,f(x)=x2+$\frac{16}{x}$,任取0<x1<x2≤2,作差f(x1)-f(x2)=(x1-x2)$•\frac{({x}_{1}+{x}_{2}){x}_{1}{x}_{2}-16}{{x}_{1}{x}_{2}}$,判断符号即可证明.
(3)利用函数的单调性、函数零点判定定理即可得出.
解答 解:(1)f(x)的定义域为{x|x≠0},关于原点对称.
①a=0时,f(-x)=x2=f(x),∴f(x)是偶函数.
②a≠0时,f(-x)≠±f(x),∴f(x)是非奇非偶函数.
(2)当a=16时,f(x)=x2+$\frac{16}{x}$,任取0<x1<x2≤2,
则f(x1)-f(x2)=$({x}_{1}^{2}+\frac{16}{{x}_{1}})$-$({x}_{2}^{2}+\frac{16}{{x}_{2}})$=(x1-x2)$•\frac{({x}_{1}+{x}_{2}){x}_{1}{x}_{2}-16}{{x}_{1}{x}_{2}}$,
∵0<x1<x2≤2,∴x1-x2<0,0<x1x2<4,0<x1+x2<4.
∴(x1-x2)$•\frac{({x}_{1}+{x}_{2}){x}_{1}{x}_{2}-16}{{x}_{1}{x}_{2}}$>0,即f(x1)-f(x2)>0,∴f(x1)>f(x2).
∴f(x)在x∈(0,2]上是单调递减函数.
(3)结论:方程在(0,+∞)上共有两个解.
证明:当a=16时,任取2≤x1<x2,则同理可证f(x1)<f(x2).
∴f(x)在[2,+∞)上是单调递增函数.
∴x3-2016x+16=0在的解即为方程x2+$\frac{16}{x}$-2016=0,x∈(0,+∞)的解.
令g(x)=f(x)-2016,
∴当x∈(0,2)时,由$f(\frac{1}{1000})$=16000+$\frac{1}{1000000}$>2016得$g(\frac{1}{1000})$>0.
且f(2)=12<2016得g(2)<0,
又g(x)的图象在x∈(0,2]的解上是不间断的曲线,由零点存在定理知函数在x∈[0,2]上有一个零点,又由g(x)在x∈(0,2]上是单调递减函数,所以函数在[0,2]上只有一个零点.
当x∈(2,+∞)时,由f(2)=12<2016,且f(1000)>0且f(x)在x∈[2,+∞)上是单调递增函数得g(2)<0,
g(1000)>0,g(x)的图象在(2,+∞)上是不间断的曲线,
由零点存在定理知函数在x∈[2,+∞)有一个零点,又由g(x)在x∈(2,+∞)调递增知函数在x∈(2,+∞)只有一个零点.
点评 本题考查了函数的单调性奇偶性、函数零点判定定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | -2 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{50}$ | B. | $\frac{1}{20}$ | C. | $\frac{20}{1003}$ | D. | $\frac{50}{1003}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (1,2) | C. | [2,3) | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5-12i | B. | -5+12i | C. | 5-12i | D. | 5+12i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com