精英家教网 > 高中数学 > 题目详情
4.若实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$则2x+4y的最小值是(  )
A.6B.-6C.4D.2

分析 利用线性规划的知识,根据目标函数的几何意义,结合数形结合即可求出2x+4y的最小值.

解答 解:作出不等式组对应的平面区域如图:
设z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直线y=-$\frac{1}{2}$x+$\frac{z}{4}$,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{4}$经过点C时,
直线y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$,
即C(3,-3),
此时z=2x+4y=2×3+4×(-3)=6-12=-6.
故选:B

点评 本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.观察如表:
x-3-2-1123
f(x)51-1-335
g(x)1423-2-4
则f[g(3)-f(-1)]=(  )
A.3B.4C.-3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从1003名学生中选出50个代表,先用简单随机抽样剔除3人,再将剩下的1000人均分成20组,采用系统抽样方法选出50人,则每个人被选中的概率均为(  )
A.$\frac{1}{50}$B.$\frac{1}{20}$C.$\frac{20}{1003}$D.$\frac{50}{1003}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=$\left\{\begin{array}{l}{(3-a)x+1,x<1}\\{{a}^{x},x≥1}\end{array}\right.$,若函数f(x)是R上的增函数,则a的取值范围是(  )
A.(1,3)B.(1,2)C.[2,3)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|-2<x<4},B={-2,1,2,4},则A∩B=(  )
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=xex-mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是(  )
A.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$B.$(\frac{2}{{3{e^2}}},\frac{1}{e})$C.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{e})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z满足(5+12i)z=169,则$\overline{z}$=(  )
A.-5-12iB.-5+12iC.5-12iD.5+12i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义域为R的偶函数f(x),其导函数为f'(x),对任意x∈[0,+∞),均满足:xf'(x)>-2f(x).若g(x)=x2f(x),则不等式g(2x)<g(1-x)的解集是(  )
A.(-∞,-1)B.$({-∞,\frac{1}{3}})$C.$({-1,\frac{1}{3}})$D.$({-∞,-1})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设实数x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,则3x+2y的最大值为3.

查看答案和解析>>

同步练习册答案