18£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨-1£¬0£©£¬$\overrightarrow{b}$=£¨$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©£¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$ µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{5¦Ð}{6}$C£®$\frac{¦Ð}{3}$D£®$\frac{2¦Ð}{3}$

·ÖÎö ÓÉÒÑÖªÇó³ö$\overrightarrow{a}•\overrightarrow{b}$¼°$|\overrightarrow{a}|£¬|\overrightarrow{b}|$£¬´úÈëÊýÁ¿»ýÇó¼Ð½Ç¹«Ê½µÃ´ð°¸£®

½â´ð ½â£º¡ß$\overrightarrow{a}$=£¨-1£¬0£©£¬$\overrightarrow{b}$=£¨$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©£¬
¡à$\overrightarrow{a}•\overrightarrow{b}=-\frac{\sqrt{3}}{2}$£¬|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=1£¬
¡àcos£¼$\overrightarrow{a}£¬\overrightarrow{b}$£¾=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=-\frac{\sqrt{3}}{2}$£¬
ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$ µÄ¼Ð½ÇΪ$\frac{5¦Ð}{6}$£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²éÁËÓÉÊýÁ¿»ýÇóÏòÁ¿µÄ¼Ð½Ç£¬ÊÇ»ù´¡Ì⣬

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®¹ØÓÚÏÂÁÐÃüÌ⣬ÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
£¨1£©Èôµã£¨2£¬1£©ÔÚÔ²x2+y2+kx+2y+k2-15=0Í⣬Ôòk£¾2»òk£¼-4
£¨2£©ÒÑÖªÔ²M£º£¨x+cos¦È£©2+£¨y-sin¦È£©2=1£¬Ö±Ïßy=kx£¬ÔòÖ±ÏßÓëÔ²ºãÏàÇÐ
£¨3£©ÒÑÖªµãPÊÇÖ±Ïß2x+y+4=0ÉÏÒ»¶¯µã£¬PA¡¢PBÊÇÔ²C£ºx2+y2-2y=0µÄÁ½ÌõÇÐÏߣ¬A¡¢BÊÇÇе㣬ÔòËıßÐÎPACBµÄ×îÐ¡Ãæ»ýÊÇΪ2
£¨4£©ÉèÖ±ÏßϵM£ºxcos¦È+ysin¦È=2+2cos¦È£¬MÖеÄÖ±ÏßËùÄÜΧ³ÉµÄÕýÈý½ÇÐÎÃæ»ý¶¼µÈÓÚ12$\sqrt{3}$£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯Êý£¬ÓÖÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õµÄÊÇ£¨¡¡¡¡£©
A£®$y={x^{\frac{1}{2}}}$B£®y=x2C£®y=-x|x|D£®y=x-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èç¹ûÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ö÷ÊÓͼÓë×óÊÓͼÊDZ߳¤Îª2µÄÕýÈý½ÇÐΡ¢¸©ÊÓͼÂÖÀªÎªÕý·½ÐΣ¬£¨µ¥Î»£ºcm£©£¬Ôò´Ë¼¸ºÎÌåµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®8cm2B£®$4\sqrt{3}$ cm2C£®12 cm2D£®$4+4\sqrt{3}$ cm2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=2£¬ÇÒÂú×ãan+1=2an+3•2n+1£¬£¨n¡ÊN*£©£®
£¨1£©Éèbn=$\frac{a_n}{2^n}$£¬Ö¤Ã÷ÊýÁÐ{bn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔĶÁÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈëaµÄֵΪ$\frac{8}{17}$£¬ÔòÊä³öµÄkÖµÊÇ£¨¡¡¡¡£©
A£®9B£®10C£®11D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ £¨ tΪ²ÎÊý£©£®ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öá ½¨Á¢¼«×ø±êϵ£¬Ô²CµÄ·½³ÌΪ ¦Ñ=2$\sqrt{3}$sin¦È£®
£¨¢ñ£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãPµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬Ô²CÓëÖ±Ïßl½»ÓÚA£¬BÁ½µã£¬Çó|PA|+|PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®É躯Êýf£¨x£©¶ÔÈÎÒâʵÊýxÂú×ãf£¨x£©=-f£¨x+2£©£¬ÇÒµ±0¡Üx¡Ü2ʱ£¬f£¨x£©=x£¨x-2£©£¬Ôòf£¨-2017£©=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Éèa=log43£¬b=log34£¬c=0.3-2£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇa£¼b£¼c£¨°´´ÓСµ½´óµÄ˳Ðò£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸