精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均为正数,前n项和为Sn,且Sn=
an(an+1)
2
(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=-
2Sn
(n+1)•2n
,Tn=b1+b2+…+bn,求Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用2Sn=an2+an,知当n≥2时,2Sn-1=an-12+an-1,两式相减,可求得an-an-1=1,n≥2,从而可求得数列{an}的通项公式;
(2)依题意,易求bn=-
n
2n
,利用错位相减法即可求得Tn
解答: 解:(1)Sn=
an(an+1)
2
,n∈N+
,当n=1时,S1=
a1(a1+1)
2
,∴a1=1…(1分)
∵2Sn=an2+an
当n≥2时,2Sn-1=an-12+an-1
两式相减得:2an=2(Sn-Sn-1)=
a
2
n
-
a
2
n-1
+an-an-1
,…(3分)
∴(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,
∴an-an-1=1,n≥2,…(5分)
∴数列{an}是等差数列,∴an=n…(6分)
(2)由(1)Sn=
n(n+1)
2

bn=-
2Sn
(n+1)•2n
=-
n
2n
,…(8分)
-Tn=
1
2
+
2
22
+…+
n-1
2n-1
+
n
2n
,…(9分)
-2Tn=1+
2
2
+…+
n-1
2n-2
+
n
2n-1
,…(10分)
Tn=-1-
1
2
-…-
1
2n-1
+
n
2n

=-
1-
1
2n
1-
1
2
+
n
2n

=-2+
1
2n-1
+
n
2n
=-2+
n+2
2n
.…(12分).
点评:本题考查数列的求和,着重考查等差关系的确定与其通项公式的应用,考查错位相减法求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={x|-1<x<1},N={x|log2x<1},则M∩N等于(  )
A、{x|0<x<1}
B、{x|-1<x<2}
C、{x|-1<x<0}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log2.83.1,b=logπe,c=logeπ,则(  )
A、a<c<b
B、c<a<b
C、b<a<c
D、b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x≥
5
2
,求f(x)=
x2-4x+5
x-2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,首项a1=3,前n项和为Sn.令cn=(-1)nSn(n∈N*),{cn}的前20项和T20=330.数列{bn}是公比为q的等比数列,前n项和为Wn,且b1=2,q3=a9
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)证明:(3n+1)Wn≥nWn+1(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

南昌某中学为了重视国学的基础教育,开设了A,B,C,D,E共5门选修课,每个学生必须且只能选修1门课程课,现有该校的甲、乙、丙、丁4名学生:
(1)求恰有2门选修课没有被这4名学生选择的概率;
(2)分别求出这4名学生选择A选修课的人数为1和3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx+(4-x)ln(4-x),若a>0,b>0,证明:alna+blnb≥(a+b)ln
a+b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
1
2
PD

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
(3)求点P到平面BQD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则正实数a的取值范围
 

查看答案和解析>>

同步练习册答案