| A. | [$\frac{π}{6}$,$\frac{π}{3}$] | B. | [$\frac{π}{6}$,$\frac{π}{4}$] | C. | [$\frac{π}{4}$,$\frac{π}{3}$] | D. | [$\frac{π}{6}$,$\frac{π}{2}$] |
分析 由约束条件作出可行域,求出直线所过定点,求出直线与可行域中点连线斜率的最小值和最大值,再由斜率等于直线倾斜角的正切值得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$作出可行域如图,![]()
直线y=k(x+1)过定点P(-1,0),
由图可知A($2,\sqrt{3}$),B(0,$\sqrt{3}$),
则${k}_{PA}=\frac{\sqrt{3}}{3},{k}_{PB}=\sqrt{3}$,
∴直线PA的倾斜角为$\frac{π}{6}$,直线PB的倾斜角为$\frac{π}{3}$.
则函数y=k(x+1)表示的直线的倾斜角的取值范围为$[\frac{π}{6},\frac{π}{3}]$.
故选:A.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com