精英家教网 > 高中数学 > 题目详情
17.若函数y=k(x+1)的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,则函数y=k(x+1)表示的直线的倾斜角的取值范围为(  )
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{6}$,$\frac{π}{4}$]C.[$\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{2}$]

分析 由约束条件作出可行域,求出直线所过定点,求出直线与可行域中点连线斜率的最小值和最大值,再由斜率等于直线倾斜角的正切值得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$作出可行域如图,

直线y=k(x+1)过定点P(-1,0),
由图可知A($2,\sqrt{3}$),B(0,$\sqrt{3}$),
则${k}_{PA}=\frac{\sqrt{3}}{3},{k}_{PB}=\sqrt{3}$,
∴直线PA的倾斜角为$\frac{π}{6}$,直线PB的倾斜角为$\frac{π}{3}$.
则函数y=k(x+1)表示的直线的倾斜角的取值范围为$[\frac{π}{6},\frac{π}{3}]$.
故选:A.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={-1,1},B={x|x<a},若A∩B=∅,则(  )
A.a≤-1B.a≥-1C.a≤1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合M={x|x2-2x<0},N={x|x<1},则M∩∁RN=(  )
A.(0,2]B.(0,2)C.[1,2)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)截抛物线y2=4x的准线所得线段长为b,则a=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=2x上一点P(m,2),则m=2,点P到抛物线的焦点F的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x≤2\\ y≥1\end{array}\right.$,则z=x+2y的最小值是(  )
A.0B.1C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A(-$\sqrt{2}$,0),B($\sqrt{2}$,0),动点E满足直线EA与直线EB的斜率之积为-$\frac{1}{2}$.
(Ⅰ)求动点E的轨迹C的方程;
(Ⅱ)设过点F(1,0)的直线l1与曲线C交于点P,Q,记点P到直线l2:x=2的距离为d.
(ⅰ)求$\frac{|PF|}{d}$的值;
(ⅱ)过点F作直线l1的垂线交直线l2于点M,求证:直线OM平分线段PQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥的底面是边长为a的正三角形,其正视图与俯视图如图所示,若侧视图的面积为$\frac{3}{4}$,三棱锥的体积为$\frac{1}{4}$,则a的值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在直角梯形ABCD中,AB=BC=2,CD=1,AB∥CD,AD⊥AB.点P是直角梯形内任意一点.若$\overrightarrow{PA}$•$\overrightarrow{PB}$≤0,则点P所在区域的面积是$\frac{π}{3}+\frac{\sqrt{3}}{4}$.

查看答案和解析>>

同步练习册答案