精英家教网 > 高中数学 > 题目详情
6.已知三棱锥的底面是边长为a的正三角形,其正视图与俯视图如图所示,若侧视图的面积为$\frac{3}{4}$,三棱锥的体积为$\frac{1}{4}$,则a的值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{4}$D.1

分析 根据几何体的三视图,得出该几何体是底面边长为a的正三棱锥,结合题意,列出方程组,求出答案即可.

解答 解:根据几何体的三视图,得;
该几何体是底面边长为a的正三棱锥,
且正三棱锥的高为h,
∴侧视图的面积为$\frac{1}{2}×$$\frac{\sqrt{3}}{2}$ah=$\frac{3}{4}$;…①
底面△的面积为$\frac{\sqrt{3}}{4}$a2
∴三棱锥的体积为$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$a2×h=$\frac{1}{4}$;…②
由①、②组成方程组,解得a=1.
故选:D.

点评 本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2且|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数y=k(x+1)的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,则函数y=k(x+1)表示的直线的倾斜角的取值范围为(  )
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{6}$,$\frac{π}{4}$]C.[$\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2015=(  )
A.22015-1B.21009-3C.3×21007-3D.21008-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,(a>0,b>0)$上一点,F是右焦点,且△OPF为等腰直角三角形(O为坐标原点),则双曲线离心率的值是$\frac{{\sqrt{5}+1}}{2}$或$\frac{{\sqrt{10}+\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+ln(x+1)(a∈R).
(Ⅰ)当a=2时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在$\left\{\begin{array}{l}{x≥0}\\{x-y≥0}\end{array}\right.$,所表示的平面区域内,求实数a的取值范围.
(Ⅲ)将函数y=f(x)的导函数的图象向右平移一个单位后,再向上平移一个单位,得到函数y=g(x)的图象,试证明:当a=$\frac{1}{2}$时,[g(x)]n-g(xn)≥2n-2(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={y|y=2x,0≤x≤1},集合B={1,2,3,4},则A∩B等于(  )
A.{0,1}B.{1,2}C.{2,3}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数y=|x-2|-2的定义域为集合A={x∈R|-2≤x≤2},值域为集合B,则(  )
A.A=BB.A?BC.B?AD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设A(x1,y1),B(x2,y2)是椭圆上的两点,已知向量$\overrightarrow{m}$=($\frac{{x}_{1}}{b}$,$\frac{{y}_{1}}{a}$),向量$\overrightarrow{b}$=($\frac{{x}_{2}}{b}$,$\frac{{y}_{2}}{a}$),若$\overrightarrow{m}•\overrightarrow{n}$=0,且椭圆的离心率为e=$\frac{\sqrt{3}}{2}$,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(3)△AOB的面积是否为定值?如果是,请求出此定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案