精英家教网 > 高中数学 > 题目详情
2.设x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x≤2\\ y≥1\end{array}\right.$,则z=x+2y的最小值是(  )
A.0B.1C.4D.8

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x≤2\\ y≥1\end{array}\right.$作出可行域如图,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,
由图可知,当直线y=$-\frac{1}{2}x+\frac{z}{2}$过点A(-1,1)时,目标函数取得最小值为-1+2×1=1.
故选:B.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知抛物线C:y2=2px(p>0)的焦点为F,点E在C的准线上,且在x轴上方,线段EF的垂直平分线经过C上一点M,且与C的准线交于点N(-1,$\frac{3}{2}$),则|MF|=(  )
A.5B.6C.10D.5或10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知 0≤x≤1,若|$\frac{1}{2}$x3-ax|≤1恒成立,则实数a的取值范围是[-$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设点P(x,y),则“x=1且y=-2”是“点P在直线l:x-y-3=0上”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数y=k(x+1)的图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\end{array}\right.$,则函数y=k(x+1)表示的直线的倾斜角的取值范围为(  )
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{6}$,$\frac{π}{4}$]C.[$\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知线性变换T1是按逆时针方向旋转90°的旋转变换,其对应的矩阵为M,线性变换T2:$\left\{\begin{array}{l}x'=2x\\ y'=3y\end{array}\right.$对应的矩阵为N.
(Ⅰ)写出矩阵M、N;
(Ⅱ)若直线l在矩阵NM对应的变换作用下得到方程为y=x的直线,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2015=(  )
A.22015-1B.21009-3C.3×21007-3D.21008-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+ln(x+1)(a∈R).
(Ⅰ)当a=2时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在$\left\{\begin{array}{l}{x≥0}\\{x-y≥0}\end{array}\right.$,所表示的平面区域内,求实数a的取值范围.
(Ⅲ)将函数y=f(x)的导函数的图象向右平移一个单位后,再向上平移一个单位,得到函数y=g(x)的图象,试证明:当a=$\frac{1}{2}$时,[g(x)]n-g(xn)≥2n-2(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则这个几何体的体积是(  )
A.$\frac{40}{3}$B.$\frac{80}{3}$C.$\frac{100}{3}$D.40

查看答案和解析>>

同步练习册答案