精英家教网 > 高中数学 > 题目详情
11.圆C:(x-1)2+(y-$\sqrt{3}}$)2=2截直线l:x+$\sqrt{3}$y-6=0所得弦长为2.

分析 求出圆心坐标和半径,利用点到直线的距离公式求出距离,结合弦长公式进行计算即可.

解答 解:圆心为(1,$\sqrt{3}}$),半径为R=$\sqrt{2}$,
圆心到直线的距离d=$\frac{|1+\sqrt{3}×\sqrt{3}-6|}{\sqrt{1+(\sqrt{3})^{2}}}$=$\frac{|1+3-6|}{2}=\frac{2}{2}=1$,
则对应的弦长l=2$\sqrt{{R}^{2}-{d}^{2}}$=2$\sqrt{2-1}$=2,
故答案为:2.

点评 本题主要考查直线和圆相交时的弦长公式的计算,利用点到直线的距离求出距离是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x3-12x+4,x∈R.
(1)求f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.方程22x+m•2x+m+1=0有两解,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,四边形ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于(  )
A.120°B.136°C.144°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线C1的极坐标方程是ρsinθ+ρcosθ-1=0,圆C2的参数方程是$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α是参数).
(1)求直线C1和圆C2的交点的极坐标;
(2)若直线l经过直线C1和圆C2交点的中点,且垂直于直线C1,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l经过点P(-2,6),倾斜角α=$\frac{π}{4}$,圆C的极坐标方程是ρ=2cosθ.
(Ⅰ)写出直线l的参数方程,并把圆C的极坐标方程化为直角坐标方程;
(Ⅱ)设圆C上的点A到直线l的距离最小,点B到直线l的距离最大,求点A,B的横坐标之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.计算sin43°cos13°-sin13°cos43°的值等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,自二面角α-l-β内任意一点A分别作AB⊥α,AC⊥β,垂足分别为B和C,若∠BAC=30°,则二面角α-l-β的大小为150°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-ax,a∈R.
(1)当a=1时,求f(x)的极值;
(2)若函数y=f(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案