精英家教网 > 高中数学 > 题目详情
19.用数学归纳法证明1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}>\frac{n}{2}(n∈{N^*})$,假设n=k时成立,则当n=k+1时,不等式左边增加的项数是(  )
A.1B.k-1C.kD.2k

分析 当n=k时,写出左端,并当n=k+1时,写出左端,两者比较,关键是最后一项和增加的第一项的关系

解答 解:当n=k时,左端=1+$\frac{1}{2}+\frac{1}{3}+…$+$\frac{1}{{2}^{k}-1}$,
那么当n=k+1时  左端=1+$\frac{1}{2}+\frac{1}{3}+…$+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$=1+$\frac{1}{2}+\frac{1}{3}+…$+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}+{2}^{k}-1}$,
∴左端增加的项为$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k}+{2}^{k}-1}$,所以项数为:2k
故选:D.

点评 本题考查数学归纳法证明,其中关键一步就是从k到k+1,是学习中的难点,也是学习中重点,解答过程中关键是注意最后一项与增添的第一项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x|x-a|+b(x∈R)
(Ⅰ)当0≤x≤a时,求函数f(x)的最大值;
(Ⅱ)当a=1,b=-1时,求不等式f(x)≥|x|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法中,错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B.对于命题p:?x∈R,使得x2+x+1<0,则¬p为:?x∈R,均有x2+x+1≥0
C.若p∧q为假命题,则p,q均为假命题
D.“x>2”是“x2-3x+2>0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出下列命题:①一条直线的倾斜角为α,则它的斜率为k=tanα;②若tanθ•cosθ>0,则θ在第一二象限;③方程y=k(x-2)表示通过(2,0)的所有直线;④第一象限角都是锐角;⑤若两圆x2+(y+1)2=1和(x+1)2+y2=r2相交,则实数r的取值范围区间是($\sqrt{2}$-1,+∞)
上述命题中所有正确的命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的一元二次方程c(a-b)x2+b(c-a)x+a(b-c)=0有两个相等实根,求证:$\frac{1}{a}$+$\frac{1}{c}$=$\frac{2}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F2作直线l交双曲线C的右支于A、B两点,若△F1AB是以∠A为直角的等腰直角三角形,则双曲线C的离心率为$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果向量$\overrightarrow{{a}_{1}}$=$(\begin{array}{l}{{a}_{1}}\\{{b}_{1}}\\{{c}_{1}}\end{array})$,$\overrightarrow{{a}_{2}}$=$(\begin{array}{l}{{a}_{2}}\\{{b}_{2}}\\{{c}_{2}}\end{array})$线性相关,则$|\begin{array}{l}{{b}_{1}}&{{c}_{1}}\\{{b}_{2}}&{{c}_{2}}\end{array}|$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足a1=2,an+1+nan=an2+1,n∈N*
(Ⅰ)求a2,a3,a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设数列Sn是等差数列{an}的前n项和,若a3=5,a8=11,则S10=(  )
A.90B.80C.100D.120

查看答案和解析>>

同步练习册答案