分析 (1)欲证PC⊥平面AEF,根据直线与平面垂直的判定定理可知只需证PC与平面AEF内两相交直线垂直,而AF⊥PC,EF⊥PC,AF∩EF=F,满足定理的条件;
(2)利用VE-ACF=VF-ACE,即可求点F到平面ACE的距离.
解答 (1)证明:∵PA=CA,F为PC的中点,∴AF⊥PC.
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.
∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC.
∵AF∩EF=F,∴PC⊥平面AEF.
(2)解:在△ACE中,AE=EC=$\sqrt{5}$,AC=2,∴S△ACE=2.
VE-ACF=$\frac{1}{3}{S}_{△ACF}•EF$=$\frac{1}{3}•1•\sqrt{3}$=$\frac{\sqrt{3}}{3}$,
∵VE-ACF=VF-ACE,
∴$\frac{1}{3}•2•d$=$\frac{\sqrt{3}}{3}$,
∴d=$\frac{\sqrt{3}}{2}$
即点F到平面ACE的距离为$\frac{\sqrt{3}}{2}$.
点评 本题主要考查了直线与平面垂直的判定,以及点F到平面ACE的距离,考查空间想象能力、运算能力和推理论证能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 命中环数 | 10环 | 9环 | 8环 | 7环 |
| 概率 | 0.30 | 0.28 | 0.18 | 0.12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013 | B. | 2014 | C. | 2015 | D. | 2016 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com