精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD,底面ABCD是正方形,PA⊥面ABCD,点M是CD的中点,点N是PB的中点,连接AM,AN,MN.
(1)求证:MN∥面PAD;
(2)若MN=5,AD=3,求二面角N-AM-B的余弦值.
分析:(1)要证明线面平行,需要设法在平面PAD内找到与MN平行的直线,因为给出的M,N分别是DC和PB的中点,所以联想到找PA的中点E,然后利用三角形的中位线知识结合底面是正方形证出DE∥MN,则问题得到证明;
(2)求二面角N-AM-B的余弦值,可采用找二面角的平面角的办法,因为易证平面PAB⊥平面ABCD,所以可以直接过N作AB的垂线垂足为G,则该垂线垂直于底面,然后过垂足G作AM的垂线GF,连接NF,则二面角的平面角找出,然后利用题目给出的条件,通过解直角三角形进行求解即可.
解答:(1)证明:如图,
取PA的中点E,连接DE,EN,
∵点N是PB的中点,∴EN∥AB,EN=
1
2
AB

∵点M是CD的中点,底面ABCD是正方形,
DM∥AB,DM=
1
2
AB

∴EN∥DM,EN=DM.
∴四边形EDMN是平行四边形.
∴MN∥DE.
∵DE?平面PAD,MN?平面PAD,
∴MN∥面PAD;
(2)解:取AB中点G,连结NG,则NG∥PA,PA⊥面ABCD,
∴NG⊥面ABCD.
∵AM?面ABCD,
∴NG⊥AM.
过G作GF⊥AM,垂足为F,连接NF,
∵NG∩GF=G,NG?面NGF,GF?面NGF,
∴AM⊥面NGF.
∵NF?面NGF,
∴AM⊥NF.
∴∠NFG是二面角N-AM-B的平面角.
在Rt△NGM中,MN=5,MG=AD=3,得NG=
MN2-MG2
=
52-32
=4

在Rt△MGA中,AG=
3
2
,得AM=
MG2+AG2
=
32+(
3
2
)2
=
3
5
2

GF=
AG•MG
AM
=
3
2
×3
3
5
2
=
3
5
5

在Rt△NGF中,NF=
NG2+GF2
=
42+(
3
5
5
)2
=
445
5

cos∠NFG=
GF
NF
=
3
5
5
445
5
=
3
89
89

∴二面角N-AM-B的余弦值为
3
89
89
点评:本题考查了线面平行的判定,考查了二面角的平面角的求法,“寻找垂面,构造垂线”是找二面角的平面角常用的方法,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案