精英家教网 > 高中数学 > 题目详情
12.命题p:方程x2+mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m+2)x+1=0无实数根,若“p或q”为真命题,求m的取值范围.

分析 由“p或q”为真命题,得到p,q中至少有一个为真命题,当p为真命题时,得m<-2,当q为真命题时,得-3<m<-1.由此利用p真q假、q真p假、p真q真,能求出m的取值范围.

解答 解:∵“p或q”为真命题,则p,q中至少有一个为真命题,
当p为真命题时,则$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{{x}_{1}+{x}_{2}=-m>0}\\{{x}_{1}{x}_{1}=1}\end{array}\right.$,解得m<-2,
当q为真命题时,则△=16(m+2)2-16<0,得-3<m<-1.
当p真q假时,得m≤-3.
当q真p假时,得-2≤m<-1.
当p真q真时,-3<m<-2
综上,m<-1.
∴m的取值范围是(-∞,-1).

点评 本题考查实数的取值范围的求法,考查复合命题真假判断等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(a-1)lnx+ax2+1.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a≥l时,任意的x1>x2>0,总有|f(x1)-f(x2)|>2|x1-x2|,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x,x>0\\{2^x},x≤0\end{array}\right.$,则$f[{f({\frac{1}{9}})}]$的值为(  )
A.$\frac{1}{4}$B.4C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数茎叶图如图所示,去掉一个最高分和一个最低分后,所剩数据的平均数为85.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{2sinC-sinB}{sinB}$=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{{b}^{2}+{c}^{2}-{a}^{2}}$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,sinC=3sinB,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)满足f(x-1)=2x+3a,且f(a)=7.
(1)求函数f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.今年双11期间国家工商总局随机抽取了100家店铺销售的100件羽绒大衣进行质量检验,按重量(单位:g)分组(重量大的质量高),得到的频率分布表如图所示:
组号重量分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再完成下列频率分布直方图;
(2)由于该产品要求质量高,决定在重量大的第3,4,5组中用分层抽样抽取6个产品再次检验,求第3,4,5组每组各抽取多少产品进入第二次检验?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平行六面体ABCD-A1B1C1D1中,若$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AB}$+2y$\overrightarrow{AD}$+3z$\overrightarrow{{B}_{1}B}$,则x+y+z=$\frac{11}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知角α(0°≤α<360)终边上一点的坐标为(sin235°,cos235°),则α=(  )
A.215°B.225°C.235°D.245°

查看答案和解析>>

同步练习册答案