精英家教网 > 高中数学 > 题目详情
17.等比数列{an}是单调递增数列,且有a2a5=6,a3+a4=5,则其公比q=(  )
A.$\frac{2}{3}$B.$\frac{1}{5}$C.5D.$\frac{3}{2}$

分析 由等比数列的性质可得:a2a5=6=a3a4,又a3+a4=5,q>1,解出即可得出.

解答 解:由等比数列的性质可得:a2a5=6=a3a4,又a3+a4=5,q>1,解得a3=2,a4=3,
∴q=$\frac{3}{2}$.
故选:D.

点评 本题考查了等比数列的定义通项公式及其性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,左焦点为F1(-1,0),右准线方程为:x=4.
(1)求椭圆C的标准方程;
(2)若椭圆C上点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值及点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(1-i)2016+(1+i)2016的值是(  )
A.21008B.21009C.0D.22016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-ax2+1.
(1)若函数在x=4时取得极值,求a的值.
(2)若函数f(x)在区间(3,+∞)内单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的不等式mx2-(m+2)x+m+1>0解集为R,则实数m的取值范围是(  )
A.m>$\frac{2\sqrt{3}}{3}$或m<-$\frac{2\sqrt{3}}{3}$B.m<-$\frac{2\sqrt{3}}{3}$或m>0C.m>$\frac{2\sqrt{3}}{3}$D.m<-$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C的对边为a,b,c,角A,B,C的大小成等差数列,向量$\overrightarrow{m}$=(sin$\frac{A}{2}$,cos$\frac{A}{2}$),=(cos$\frac{A}{2}$,-$\sqrt{3}$cos$\frac{A}{2}$),f(A)=$\overrightarrow{m}$•$\overrightarrow{n}$,
(1)若f(A)=-$\frac{\sqrt{3}}{2}$,试判断三角形ABC的形状;
(2)若b=$\sqrt{3}$,a=$\sqrt{2}$,求边c及S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,则$\overrightarrow{BE}$=(  )
A.$\overrightarrow{b}$-$\frac{1}{3}$$\overrightarrow{a}$B.$\overrightarrow{b}$-$\frac{2}{3}$$\overrightarrow{a}$C.$\overrightarrow{b}$-$\frac{4}{3}$$\overrightarrow{a}$D.$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若方程x2+(m+2)x+m+5=0只有正根,则m的取值范围是(  )
A.m≤-4或m≥4B.-5<m≤-4C.-5≤m≤-4D.-5<m<-2

查看答案和解析>>

同步练习册答案