精英家教网 > 高中数学 > 题目详情

(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.
在平面直角坐标系中,对于直线和点<0,则称点被直线分隔.若曲线C与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C的一条分隔线.
⑴求证:点被直线分隔;
⑵若直线是曲线的分隔线,求实数的取值范围;
⑶动点M到点的距离与到轴的距离之积为1,设点M的轨迹为E,求证:通过原点的直线中,有且仅有一条直线是E的分割线.

(1)证明见解析;(2);(3)证明见解析.

解析试题分析:本题属于新定义问题,(1)我们只要利用题设定义求出的值,若,则结论就可得证;(2)直线是曲线的分隔线,首先直线与曲线无交点,即直线方程与曲线方程联立方程组,方程组应无实解,方程组变形为,此方程就无实解,注意分类讨论,按二次项系数为0和不为0分类,然后在曲线上找到两点位于直线的两侧.则可得到所求范围;(3)首先求出轨迹的方程,化简为,过原点的直线中,当斜率存在时设其方程为,然后解方程组,变形为,这个方程有无实数解,直接判断不方便,可转化为判断函数的图象有无交点,而这可利用函数图象直接判断.是开口方向向上的二次函数,是幂函数,其图象一定有交点,因此直线不是的分隔线,过原点的直线还有一条就是,它显然与曲线无交点,又曲线上两点一定在直线两侧,故它是分隔线,结论得证.
试题解析:(1)由题得,,∴被直线分隔.
(2)由题得,直线与曲线无交点
无解
,∴.
又对任意的,点在曲线上,满足,被直线分隔,所以所求的范围是
(3)由题得,设,∴
化简得,点的轨迹方程为
①当过原点的直线斜率存在时,设方程为.
联立方程,.
,因为
所以方程有实解,直线与曲线有交点.直线不是曲线的分隔线.
②当过原点的直线斜率不存在时,其方程为.
显然与曲线没有交点,又曲线上的两点对于直线满足,即点被直线分隔.所以直线分隔线.
综上所述,仅存在一条直线的分割线.
【考点】新定义,直线与曲线的公共点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

(过点P(2,3),倾斜角为135°的直线的点斜式方程为                 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).
(1)若点M,N到直线l的距离相等,求实数k的值;
(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定抛物线是抛物线的焦点,过点的直线相交于两点,为坐标原点.
(1)设的斜率为1,求以为直径的圆的方程;
(2)设,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在⊿ABC中,A(3,2)、B(-1,5),C点在直线上,若⊿ABC的面积为10,求C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为B(0,4),离心率, 直线交椭圆于M,N两点.
(1)若直线的方程为y=x-4,求弦MN的长:
(2)如果BMN的重心恰好为椭圆的右焦点F,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l经过直线3x+4y-2=0与直线2xy+2=0的交点P,且垂直于直线x-2y-1=0 .
(1)求直线l的方程; (2)求直线l关于原点O对称的直线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,函数f(x)=x+的定义域为(0,+∞).设点P是函数图象上任一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M,N.

(1)证明:|PM|·|PN|为定值.
(2)O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

经过两点A(-3,5),B(1,1 )的直线倾斜角为________.

查看答案和解析>>

同步练习册答案