精英家教网 > 高中数学 > 题目详情
3.如图,平行四边形ABCD中,CD=1,∠BCD=60°,且BD⊥CD,正方形ADEF所在平面和平面ABCD垂直,G,H分别是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BD⊥平面CDE;
(3)求三棱锥C-ADG的体积.

分析 (1)欲证GH∥平面CDE,根据直线与平面平行的判定定理可知只需证GH与平面CDE内一直线平行,而G,H分别是DF,FC的中点,则GH∥CD,CD?平面CDE,GH?平面CDE,满足定理所需条件.
(2)欲证BD⊥平面CDE,根据直线与平面垂直的判定定理可知只需证BD与平面CDE内两相交直线垂直,根据平面ADEF⊥平面ABCD,交线为AD,ED⊥AD,ED?平面ADEF,则ED⊥平面ABCD,从而ED⊥BD,BD⊥CD,CD∩ED=D,满足定理所需条件.
(3)求出点C到平面ADG的距离,利用三棱锥的体积公式,即可求三棱锥C-ADG的体积.

解答 证明:(1)∵G,H分别是DF,FC的中点,
∴△FCD中,GH∥CD,
又∵CD?平面CDE,GH?平面CDE
∴GH∥平面CDE;
(2)平面ADEF⊥平面ABCD,交线为AD,
∵ED⊥AD,ED?平面ADEF
∴ED⊥平面ABCD,
∴ED⊥BD,
又∵BD⊥CD,CD∩ED=D
∴BD⊥平面CDE;
解:(3)在△BCD中,由已知得$BD=\sqrt{3}$,BC=2.
设Rt△BCD中BC边上的高为h.
依题意:$\frac{1}{2}•2•h=\frac{1}{2}•1•\sqrt{3}$,解得$h=\frac{{\sqrt{3}}}{2}$.
∴点C到平面ADG的距离为$\frac{{\sqrt{3}}}{2}$.
又${S_{△AGD}}=\frac{1}{2}•2•1=1$,
∴${V_{C-ADG}}=\frac{1}{3}•{S_{△AGD}}•h=\frac{1}{3}•1•\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{6}$.

点评 本题主要考查线面平行的判定定理和线面垂直的判定定理,考查三棱锥体积的计算.考查对基础知识的综合应用能力和基本定理的掌握能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出S的值为(  )
A.1500B.1800C.2000D.2500

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{b}$|=2,|$\overrightarrow{b}$-t$\overrightarrow{a}$|(t∈R)的最小值为$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.30°或150°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=$\sqrt{2}$,M为线段B1D1的中点.
(1)求证:MB⊥AC
(2)求三棱锥D1-ACB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.三棱台ABC-A1B1C1中,AB:A1B1=1:3,则三棱锥A1-ABC与B-A1B1C的体积比为(  )
A.$1:\sqrt{3}$B.1:3C.$1:3\sqrt{3}$D.1:9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.
(Ⅰ)求证:D1E⊥底面ABCD;
(Ⅱ)若直线BD1与平面ABCD所成的角为$\frac{π}{3}$,求四棱锥D1-ABED体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P是抛物线x2=4y上的动点,点P在其准线上的射影是点M,点A的坐标(4,2),则|PA|+|PM|的最小值是(  )
A.$\sqrt{17}$B.$\sqrt{13}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线y2=ax(a>0),经过焦点且倾斜角为135°的直线被抛物线所截得的弦长为8,试求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证:1+$\frac{1}{2}$$+\frac{1}{3}$$+…+\frac{1}{{2}^{n}}$>1$+\frac{n}{2}$(n≥2,n∈N

查看答案和解析>>

同步练习册答案