精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,求不等式的解集;

(2)若的解集包含,求的取值范围.

【答案】(1) {x|x≤1,或x≥4};(2) -2≤a≤0.

【解析】试题分析:(1)根据绝对值定义将不等式转化为三个不等式组,最后求它们的并集(2)条件等价于f(x)≤|x-4|在[0,2]上恒成立,根据绝对值定义可得|x+a|≤2在[0,2]上恒成立,即得-2≤x+a≤2在[0,2]上恒成立,再根据函数最值可得的取值范围.

试题解析:(1)当a=-3时,求不等式f(x)≥3,即|x-3|+|x-2|≥3,

|x+a|+|x-2|表示数轴上的x对应点到2、3对应点的距离之和,

而1和4对应点到2、3对应点的距离之和正好等于3,故|x-3|+|x-2|≥3的解集为{x|x≤1,或x≥4}.

(2)若f(x)≤|x-4|的解集包含[0,2],等价于f(x)≤|x-4|在[0,2]上恒成立,

即|x+a|≤4-x-|x-2|在[0,2]上恒成立,即|x+a|+2-x≤4-x在[0,2]上恒成立.

即|x+a|≤2在[0,2]上恒成立,即-2≤x+a≤2在[0,2]上恒成立,

即-2-x≤a≤2-x在[0,2]上恒成立,∴-2≤a≤0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线的方程为,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各函数在其定义域中,既是奇函数,又是增函数的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算下列各式的值,写出必要的计算过程.
(1)0.064 ﹣(﹣ 0+16 +0.25
(2)(log43+log83)(log32+log92)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的中心在坐标原点,焦点在x轴上,A1 , A2 , B1 , B2为椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PB2为钝角,则该椭圆离心率的取值范围是(
A.( ,1)
B.(0,
C.(0,
D.( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定方程: ,则下列命题中:

①该方程没有小于0的实数解;

②该方程有无数个实数解;

③该方程在(-∞,0)内有且只有一个实数解;

④若x0是该方程的实数解,则x0>-1.

正确的命题是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若x≥0,y≥0,且x+2y=1,则2x+3y2的最小值是

查看答案和解析>>

同步练习册答案