精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 点P(3,1)在椭圆上,△PF1F2的面积为2
(1)①求椭圆C的标准方程; ②若∠F1QF2= ,求QF1QF2的值.
(2)直线y=x+k与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,求实数k的值.

【答案】
(1)解:①由条件,可设椭圆的标准方程为 ,将点P(3,1)代入椭圆方程,

= 2c1=2 ,即

又a2=b2+c2

∴a2=12,b2=4,

∴椭圆的标准方程为:

②当 时,有


(2)解:设A(x1,y1),B(x2,y2),由 ,得4x2+6kx+3k2﹣12=0

由韦达定理及直线方程可知:

∵以AB为直径的圆经过坐标原点,则

解得: ,此时△=120>0,满足条件,

因此


【解析】(1)由三角形的面积 = 2c1,即可求得 ,将点P(3,1)代入椭圆方程,由椭圆的性质a2=b2+c2 , 即可求得a和b的值,求得椭圆方程;当 时,根据椭圆的性质及完全平方公式,即可求得QF1QF2的值;(2)将直线方程代入椭圆方程,求得关于x的一元二次方程,由韦达定理求得x1x2及y1y2 , 由题意可知 =0,根据向量数量积的坐标运算,即可求得实数k的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.

)求这两个班学生成绩的中位数及x的值;

)如果将这些成绩分为优秀(得分在175分 以上,包括175分)和过关,若学校再从这两个班获得优秀成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的可导函数的导函数为,满足,且为偶函数,,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).

1)应收集多少位女生的样本数据?

2)根据这300样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为: .估计该校学生每周平均体育运动时间超过4小时的概率;

3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为该校学生的每周平均体育运动时间与性别有关


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣lnx,g(x)=x2﹣ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)﹣f(x),A(x1 , h(x1)),B(x2 , h(x2))(x1≠x2)是函数h(x)图象上任意两点,且满足 >1,求实数a的取值范围;
(3)若x∈(0,1],使f(x)≥ 成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的方程为y2=2px(p>0),点R(1,2)在抛物线C上.
(1)求抛物线C的方程;
(2)过点Q(1,1)作直线交抛物线C于不同于R的两点A,B.若直线AR,BR分别交直线l:y=2x+2于M,N两点,求线段MN最小时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,且f(1)=3.
(1)求m的值;
(2)判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面中点.

(1)求证:平面

(2)求直线和平面所成角的正弦值.

查看答案和解析>>

同步练习册答案