精英家教网 > 高中数学 > 题目详情
2.下列四个条件中,为结论“对任意的x>0,y>0,恒有f(xy)=f(x)f(y)”成立的充分条件是(  )
A.f(x)为对数函数B.f(x)为幂函数C.f(x)为指数函数D.f(x)为正比例函数

分析 根据初等函数的性质f(x)为幂函数,即f(x)=xα,满足对任意的x>0,y>0,恒有f(xy)=f(x)f(y),即可得出结论.

解答 解:根据初等函数的性质f(x)为幂函数,即f(x)=xα,满足对任意的x>0,y>0,恒有f(xy)=f(x)f(y),
故选:B.

点评 本题考查充分条件的判断,考查初等函数的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=$\frac{4+{a}_{n}}{1-{a}_{n}}$(n∈N*).
(Ⅰ)求数列{an}和数列{bn}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Rn,求证:对任意的n∈N*,都有Rn<4n;
(Ⅲ)记cn=b2n-b2n-1(n∈N*),设数列{cn}的前n项和为Tn,求证:对任意n∈N*,都有Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ln$\sqrt{1-{x}^{2}}$的定义域是(  )
A.(-1,1)B.[-1,1]C.[-1,1)D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从集合{1,2,3,…,11}中任意取两个元素作为椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1方程的m和n,则能构成焦点在x轴上的椭圆个数为(  )
A.55B.90C.110D.121

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.5个人坐在一排10个座位上.
问:(1)任意两人不相邻的坐法有多少种?
(2)甲乙之间有两个空位的坐法有多少种?
(3)甲必须坐在乙的左边的坐法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某小卖部为了研究热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天热茶销售量与当天气温,并制作了对照表:
气温°C1496-5
茶销售量(杯)34444874
由表中数据算得线性回归方程$\widehaty=bx+a$中b≈-2
(1)求y对x的线性回归方程;
(2)预测当气温为-1℃时,热茶销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“任意的x∈R,2x4-x2+1<0”的否定是(  )
A.不存在x∈R,2x4-x2+1<0B.存在x∈R,2x4-x2+1<0
C.对任意的x∈R,2x4-x2+1≥0D.存在x∈R,2x4-x2+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,E为BB1延长线上的一点,D1E⊥面D1AC.设AB=2.
(Ⅰ)求二面角E-AC-D1的大小; 
(Ⅱ)在D1E上是否存在一点P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x+ex-a,g(x)=ln(x+2)-4ea-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为(  )
A.-ln2-1B.-1+ln2C.-ln2D.ln2

查看答案和解析>>

同步练习册答案