精英家教网 > 高中数学 > 题目详情
17.5个人坐在一排10个座位上.
问:(1)任意两人不相邻的坐法有多少种?
(2)甲乙之间有两个空位的坐法有多少种?
(3)甲必须坐在乙的左边的坐法有多少种?

分析 (1)先排好5个空座位,再把这5人,插入5个空座位所成为的6个空位中的5个,问题得以解决,
(2)先把2个空座位排在甲乙之间,并捆绑在一起看做一个复合元素和在另外3人,从8个位置中任选4个,问题得以解决,
(3)甲和乙的顺序只有两种,求出所有坐法乘以$\frac{1}{2}$,问题得以解决.

解答 解:(1)先排好5个空座位,再把这5人,插入5个空座位所成为的6个空位中的5个,故有A65=600种,
(2)先把2个空座位排在甲乙之间,并捆绑在一起看做一个复合元素和在另外3人,从8个位置中任选4个,故有A22A84=3360种,
(3)甲和乙的顺序只有两种,故甲必须坐在乙的左边的坐法有$\frac{1}{2}$A105=15120种.

点评 本题主要考查了排列问题中的相邻和不相邻的问题,相邻用捆绑,不相邻用插空,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知两个正变量x,y,满足x+y=4,则使不等式$\frac{1}{x}$+$\frac{4}{y}$≥m恒成立的实数m的取值范围是(-∞,$\frac{9}{4}$],当x=$\frac{4}{3}$,y=$\frac{8}{3}$时等号成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足2Sn=3n+1-3.
(1)求数列{an}的通项公式;
(2)若bn=lgan,设Tn为{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如果P1,P2,…,Pn是抛物线C:y2=8x上的点,它们的横坐标依次为x1,x2,…,xn,F是抛物线C的焦点,若x1+x2+…+xn=10,则|P1F|+|P2F|+…+|PnF|=10+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将一枚骰子连续抛两次,得到正面朝上的点数分别为x、y,记事件为A“x+y为偶数”,事件B“x+y<7”,则P(B|A)的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四个条件中,为结论“对任意的x>0,y>0,恒有f(xy)=f(x)f(y)”成立的充分条件是(  )
A.f(x)为对数函数B.f(x)为幂函数C.f(x)为指数函数D.f(x)为正比例函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=-3x2+a(6-a)x+b,a,b为实数.
(1)当b=-6时,解关于a的不等式f(1)>0;
(2)若不等式f(x)>0的解集为(-1,3),求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三棱锥A-BCD中,AB=AC=DB=DC=3,BC=4,AD=$\sqrt{5}$,则二面角A-BC-D的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:PM⊥平面SAC;
(2)求二面角M-AB-C的平面角的余弦值.

查看答案和解析>>

同步练习册答案