精英家教网 > 高中数学 > 题目详情
12.将一枚骰子连续抛两次,得到正面朝上的点数分别为x、y,记事件为A“x+y为偶数”,事件B“x+y<7”,则P(B|A)的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{9}$D.$\frac{7}{9}$

分析 根据题意,利用随机事件的概率公式,分别求出事件A的概率与事件A、B同时发生的概率,再用条件概率公式加以计算,可得P(B|A)的值.

解答 解:根据题意,若事件A为“x+y为偶数”发生,则x、y两个数均为奇数或均为偶数.
共有2×3×3=18个基本事件,
∴P(A)=$\frac{18}{36}$=$\frac{1}{2}$,
而A、B同时发生,基本事件有当一共有9个基本事件,
P(AB)=$\frac{9}{36}$=$\frac{1}{4}$,
因此,在事件A发生的情况下,B发生的概率为P(B|A)=$\frac{\frac{1}{4}}{\frac{1}{2}}$=$\frac{1}{2}$.
故选:B.

点评 本题给出掷骰子的事件,求条件概率.着重考查了随机事件的概率公式、条件概率的计算等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=-8x有相同的焦点,且双曲线过点M(3,$\sqrt{2}$),则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-y2=1B.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{4}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2+bx+c(a≠0,b,c∈R),若f(1+x)=f(1-x),f(x)的最小值为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函数y=|f(x)|与y=t相交于4个不同交点,从左到右依次为A,B,C,D,是否存在实数t,使得线段|AB|,|BC|,|CD|能构成锐角三角形,如果存在,求出t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数$\frac{a+3i}{1-2i}$是实数(a∈R,i为虚数单位),则实数a的值为(  )
A.$\frac{3}{2}$B.-6C.6D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.5个人坐在一排10个座位上.
问:(1)任意两人不相邻的坐法有多少种?
(2)甲乙之间有两个空位的坐法有多少种?
(3)甲必须坐在乙的左边的坐法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=log2(2+2x)的值域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥P-ABCD的底面ABCD是菱形,∠ABC=60°,AB=PC=2,$PA=PD=\sqrt{2}$.
(1)求证:平面PAD⊥平面ABCD;
(2)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)证明:AG∥平面BDE.
(2)求平面BDE和平面ADE所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案