分析 (1)由(2b-c)cos A=acos C,得2sin Bcos A=sin B,即A=$\frac{π}{3}$;
(2)由S△ABC=$\sqrt{3}$,得bc=4,由余弦定理可知a2=b2+c2-bc,即b+c=5;
(3)由A=$\frac{π}{3}$,知B+C=$\frac{2π}{3}$,且0<B<$\frac{2π}{3}$
即可得b+c=2sinB+2sinC=2sinB+2sin(A+B)
=$3sinB+\sqrt{3}cosB$=$2\sqrt{3}sin(B+\frac{π}{6})$
由0<A<$\frac{2π}{3}$,知$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$,即可求b+c的取值范围.
解答 解:(1)因为(2b-c)cos A=acos C,
所以(2sin B-sin C)cos A=sin Acos C,
即2sin Bcos A=sin Acos C+sin Ccos A,
即2sin Bcos A=sin B,
因为sin B≠0,所以cos A=$\frac{1}{2}$,又0<A<π,于是A=$\frac{π}{3}$.…(4分)
(2)因为S△ABC=$\sqrt{3}$,所以$\frac{1}{2}$bcsin$\frac{π}{3}$=$\sqrt{3}$,所以bc=4,
由余弦定理可知a2=b2+c2-bc,
所以(b+c)2=a2+3bc=13+12=25,即b+c=5.…(7分)
(3)由A=$\frac{π}{3}$,知B+C=$\frac{2π}{3}$,且0<B<$\frac{2π}{3}$
又a=2Rsin A=2sin A=2sin$\frac{π}{3}$=$\sqrt{3}$,b=2Rsin B=2sin B,c=2Rsin C,
故b+c=2sinB+2sinC=2sinB+2sin(A+B)
=$3sinB+\sqrt{3}cosB$=$2\sqrt{3}sin(B+\frac{π}{6})$…(10分)
由0<A<$\frac{2π}{3}$,知$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$,
所以$\frac{1}{2}<sin(A+\frac{π}{6})≤1$,$\sqrt{3}<2\sqrt{3}sin(A+\frac{π}{6})≤2\sqrt{3}$,
即b+c的取值范围是$(\sqrt{3},2\sqrt{3}]$…(12分)
点评 本题考查了正、余弦定理,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com